Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Synthesis, crystal structure, and molecular modeling of a layered manganese(II) phosphate : Mn3(PO4)4 2 (H3NCH2CH2)3N 6(H2O).

Journal Article · · Proposed for publication in Chemistry of Materials.
OSTI ID:1005088

A novel layered manganese(II) phosphate, Mn{sub 3}(PO{sub 4}){sub 4} {center_dot} 2(H{sub 3}NCH{sub 2}CH{sub 2}){sub 3}N {center_dot} 6(H{sub 2}O), has been synthesized solvothermally using tris(2-aminoethyl)amine (TREN) as a template. The structure was solved ab initio using X-ray powder diffraction data and confirmed by molecular modeling. The compound was further characterized by SEM, IR spectroscopy, photoluminescence, and elemental and thermal analysis. The compound crystallizes in the trigonal space group P{sub 3}c1 with a = 8.8706(4) {angstrom}, c = 26.158(2) {angstrom}, and V = 1782.6(2) {angstrom}{sup 3}. The structure consists of layers of corner sharing Mn(II)O{sub 4} and PO{sub 4} tetrahedra forming infinite [Mn{sub 3}(PO{sub 4}){sub 4}]{sup 6-} macroanions with 4.6 net topology, sandwiched by layers of TREN and water molecules. The protonated TREN molecules provide charge balancing for the inorganic sheets; the interlayer stability is accomplished mainly by a network of hydrogen bonds between water molecules and the inorganic macroanions. This hybrid organic/inorganic layered material can be reversibly dehydrated.

Research Organization:
Sandia National Laboratories
Sponsoring Organization:
USDOE
DOE Contract Number:
AC04-94AL85000
OSTI ID:
1005088
Report Number(s):
SAND2003-3212J
Journal Information:
Proposed for publication in Chemistry of Materials., Journal Name: Proposed for publication in Chemistry of Materials. Journal Issue: 11 Vol. 16; ISSN CMATEX; ISSN 0897-4756
Country of Publication:
United States
Language:
English