skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Symmetry Relationship and Strain-Induced Transitions between Insulating M1 and M2 and Metallic R phases of Vanadium Dioxide

Journal Article · · Nano Lett.
DOI:https://doi.org/10.1021/nl1020443· OSTI ID:1002933

The ability to synthesize VO{sub 2} in the form of single-crystalline nanobeams and nano- and microcrystals uncovered a number of previously unknown aspects of the metal-insulator transition (MIT) in this oxide. In particular, several reports demonstrated that the MIT can proceed through competition between two monoclinic (insulating) phases M1 and M2 and the tetragonal (metallic) R phase under influence of strain. The nature of such phase behavior has been not identified. Here we show that the competition between M1 and M2 phases is purely lattice-symmetry-driven. Within the framework of the Ginzburg-Landau formalism, both M phases correspond to different directions of the same four-component structural order parameter, and as a consequence, the M2 phase can appear under a small perturbation of the M1 structure such as doping or stress. We analyze the strain-controlled phase diagram of VO{sub 2} in the vicinity of the R-M2-M1 triple point using the Ginzburg-Landau formalism and identify and experimentally verify the pathways for strain-control of the transition. These insights open the door toward more systematic approaches to synthesis of VO{sub 2} nanostructures in desired phase states and to use of external fields in the control of the VO{sub 2} phase states. Additionally, we report observation of the triclinic T phase at the heterophase domain boundaries in strained quasi-two-dimensional VO{sub 2} nanoplatelets, and theoretically predict phases that have not been previously observed.

Research Organization:
Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)
Sponsoring Organization:
USDOE
OSTI ID:
1002933
Journal Information:
Nano Lett., Vol. 10, Issue (11) ; 11, 2010
Country of Publication:
United States
Language:
ENGLISH