skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Collimated Jet Or Expanding Outflow: Possible Origins of GRBs And X-Ray Flashes

Journal Article · · Astrophysical Journal
DOI:https://doi.org/10.1086/507861· OSTI ID:889182

We investigate the dynamics of an injected outflow propagating in a progenitor in the context of the collapsar model for gamma-ray bursts (GRBs) through two dimensional axisymmetric relativistic hydrodynamic simulations. Initially, we locally inject an outflow near the center of a progenitor. We calculate 25 models, in total, by fixing its total input energy to be 10{sup 51} ergs s{sup -1} and radius of the injected outflow to be 7 x 10{sup 7} cm while varying its bulk Lorentz factor, {Lambda}{sub 0} = 1.05 {approx} 5, and its specific internal energy, {epsilon}{sub 0}/c{sup 2} 30 (with c being speed of light). The injected outflow propagates in the progenitor and drives a large-scale outflow or jet. We find a smooth but dramatic transition from a collimated jet to an expanding outflow among calculated models. The opening angle of the outflow ({theta}{sub sim}) is sensitive to {Lambda}{sub 0}; we find {theta}{sub sim} < 2{sup o} for {Lambda}{sub 0} {approx}> 3. The maximum Lorentz factor is, on the other hand, sensitive to both of {Lambda}{sub 0} and {epsilon}{sub 0}; roughly {Lambda}{sub max} {approx} {Lambda}{sub 0}(1 + {epsilon}{sub 0}/c{sup 2}). In particular, a very high Lorentz factor of {Lambda}{sub max} {approx}> 100 is achieved in one model. A variety of opening angles can arise by changing {epsilon}{sub 0}, even when the maximum Lorentz factor is fixed. The jet structure totally depends on {Lambda}{sub 0}. When {Lambda}{sub 0} is high, a strong bow shock appears and generates a back flow. High pressure progenitor gas heated by the bow shock collimates the outflow to form a narrow, relativistic jet. A number of internal oblique shocks within the jet are generated by the presence of the back flow and/or shear instability. When {Lambda}{sub 0} is low, on the contrary, the outflow expands soon after the injection, since the bow shock is weak and thus the pressure of the progenitor gas is not high enough to confine the flow. Our finding will explain a smooth transition between the GRBs, X-ray rich GRBs (XRRs) and X-ray Flashes (XRFs) by the same model but with different {epsilon}{sub 0} values.

Research Organization:
SLAC National Accelerator Lab., Menlo Park, CA (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC02-76SF00515
OSTI ID:
889182
Report Number(s):
SLAC-PUB-12052; ASJOAB; astro-ph/0607544; TRN: US200619%%701
Journal Information:
Astrophysical Journal, Journal Name: Astrophysical Journal; ISSN 0004-637X
Country of Publication:
United States
Language:
English