skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: COASTING EXTERNAL SHOCK IN WIND MEDIUM: AN ORIGIN FOR THE X-RAY PLATEAU DECAY COMPONENT IN SWIFT GAMMA-RAY BURST AFTERGLOWS

Journal Article · · Astrophysical Journal

The plateaus observed in about one half of the early X-ray afterglows are the most puzzling feature in gamma-ray bursts (GRBs) detected by Swift. By analyzing the temporal and spectral indices of a large X-ray plateau sample, we find that 55% can be explained by external, forward shock synchrotron emission produced by a relativistic ejecta coasting in a {rho}{proportional_to}r{sup -2}, wind-like medium; no energy injection into the shock is needed. After the ejecta collects enough medium and transitions to the adiabatic, decelerating blast wave phase, it produces the post-plateau decay. For those bursts consistent with this model, we find an upper limit for the initial Lorentz factor of the ejecta, {Gamma}{sub 0} {<=} 46({epsilon}{sub e}/0.1){sup -0.24}({epsilon}{sub B}/0.01){sup 0.17}; the isotropic equivalent total ejecta energy is E{sub iso} {approx} 10{sup 53}({epsilon}{sub e}/0.1){sup -1.3}({epsilon}{sub B}/0.01){sup -0.09}(t{sub b} /10{sup 4} s) erg, where {epsilon}{sub e} and {epsilon}{sub B} are the fractions of the total energy at the shock downstream that are carried by electrons and the magnetic field, respectively, and t{sub b} is the end of the plateau. Our finding supports Wolf-Rayet stars as the progenitor stars of some GRBs. It raises intriguing questions about the origin of an intermediate-{Gamma}{sub 0} ejecta, which we speculate is connected to the GRB jet emergence from its host star. For the remaining 45% of the sample, the post-plateau decline is too rapid to be explained in the coasting-in-wind model, and energy injection appears to be required.

OSTI ID:
22004319
Journal Information:
Astrophysical Journal, Vol. 744, Issue 1; Other Information: Country of input: International Atomic Energy Agency (IAEA); ISSN 0004-637X
Country of Publication:
United States
Language:
English