DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Surfactant Engineering and Its Role in Determining the Performance of Nanoparticulate Organic Photovoltaic Devices

Abstract

The fabrication of organic photovoltaics (OPVs) from non-hazardous nanoparticulate (NP) inks offers considerable promise for the development of ecofriendly large-scale printed solar modules. However, the typical NP core-shell morphology (driven by the different donor/acceptor affinities for the surfactant used in NP synthesis) currently hinders the photovoltaic performance. As such, surfactant engineering offers an elegant approach to synthesizing a more optimal intermixed NP morphology and hence an improved photovoltaic performance. In this work, the morphology of conventional sodium dodecyl sulfate (SDS) and 2-(3-thienyl) ethyloxybutylsulfonate (TEBS)-stabilized poly(3-hexylthiophene) (P3HT) donor:phenyl-C61-butyric acid methyl ester (PC61BM) acceptor NPs is probed using scanning transmission X-ray microscopy, UV-vis spectroscopy, grazing-incidence X-ray diffraction, and scanning electron microscopy. While the SDS-stabilized NPs exhibit a size-independent core-shell morphology, this work reveals that TEBS-stabilized NPs deliver an intermixed morphology, the extent of which depends on the particle size. Consequently, by optimizing the TEBS-stabilized NP size and distribution, NP-OPV devices with a power conversion efficiency that is ~50% higher on average than that of the corresponding SDS-based NP-OPV devices are produced.

Authors:
 [1]; ORCiD logo [1];  [1];  [1];  [1]; ORCiD logo [1]
  1. University of Newcastle, Callaghan, NSW (Australia)
Publication Date:
Research Org.:
Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). Advanced Light Source (ALS); University of Newcastle, Callaghan, NSW (Australia)
Sponsoring Org.:
USDOE Office of Science (SC); Australian National Fabrication Facility (ANFF)
OSTI Identifier:
1982034
Grant/Contract Number:  
AC02-05CH11231
Resource Type:
Accepted Manuscript
Journal Name:
ACS Omega
Additional Journal Information:
Journal Volume: 7; Journal Issue: 11; Journal ID: ISSN 2470-1343
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Chowdhury, Riku, Holmes, Natalie P., Cooling, Nathan, Belcher, Warwick J., Dastoor, Paul C., and Zhou, Xiaojing. Surfactant Engineering and Its Role in Determining the Performance of Nanoparticulate Organic Photovoltaic Devices. United States: N. p., 2022. Web. doi:10.1021/acsomega.1c05711.
Chowdhury, Riku, Holmes, Natalie P., Cooling, Nathan, Belcher, Warwick J., Dastoor, Paul C., & Zhou, Xiaojing. Surfactant Engineering and Its Role in Determining the Performance of Nanoparticulate Organic Photovoltaic Devices. United States. https://doi.org/10.1021/acsomega.1c05711
Chowdhury, Riku, Holmes, Natalie P., Cooling, Nathan, Belcher, Warwick J., Dastoor, Paul C., and Zhou, Xiaojing. Wed . "Surfactant Engineering and Its Role in Determining the Performance of Nanoparticulate Organic Photovoltaic Devices". United States. https://doi.org/10.1021/acsomega.1c05711. https://www.osti.gov/servlets/purl/1982034.
@article{osti_1982034,
title = {Surfactant Engineering and Its Role in Determining the Performance of Nanoparticulate Organic Photovoltaic Devices},
author = {Chowdhury, Riku and Holmes, Natalie P. and Cooling, Nathan and Belcher, Warwick J. and Dastoor, Paul C. and Zhou, Xiaojing},
abstractNote = {The fabrication of organic photovoltaics (OPVs) from non-hazardous nanoparticulate (NP) inks offers considerable promise for the development of ecofriendly large-scale printed solar modules. However, the typical NP core-shell morphology (driven by the different donor/acceptor affinities for the surfactant used in NP synthesis) currently hinders the photovoltaic performance. As such, surfactant engineering offers an elegant approach to synthesizing a more optimal intermixed NP morphology and hence an improved photovoltaic performance. In this work, the morphology of conventional sodium dodecyl sulfate (SDS) and 2-(3-thienyl) ethyloxybutylsulfonate (TEBS)-stabilized poly(3-hexylthiophene) (P3HT) donor:phenyl-C61-butyric acid methyl ester (PC61BM) acceptor NPs is probed using scanning transmission X-ray microscopy, UV-vis spectroscopy, grazing-incidence X-ray diffraction, and scanning electron microscopy. While the SDS-stabilized NPs exhibit a size-independent core-shell morphology, this work reveals that TEBS-stabilized NPs deliver an intermixed morphology, the extent of which depends on the particle size. Consequently, by optimizing the TEBS-stabilized NP size and distribution, NP-OPV devices with a power conversion efficiency that is ~50% higher on average than that of the corresponding SDS-based NP-OPV devices are produced.},
doi = {10.1021/acsomega.1c05711},
journal = {ACS Omega},
number = 11,
volume = 7,
place = {United States},
year = {Wed Mar 09 00:00:00 EST 2022},
month = {Wed Mar 09 00:00:00 EST 2022}
}

Works referenced in this record:

Recent advances in the green processing of organic photovoltaic devices from nanoparticle dispersions
journal, January 2020

  • Rammal, Mohammad; Lévêque, Patrick; Schlatter, Guy
  • Materials Chemistry Frontiers, Vol. 4, Issue 10
  • DOI: 10.1039/d0qm00361a

Eco-Friendly Fabrication of 4% Efficient Organic Solar Cells from Surfactant-Free P3HT:ICBA Nanoparticle Dispersions
journal, September 2014

  • Gärtner, Stefan; Christmann, Marco; Sankaran, Sivaramakrishnan
  • Advanced Materials, Vol. 26, Issue 38
  • DOI: 10.1002/adma.201402360

Exploration of the Direct Arylation Polymerization Method for the Practical Application of Conjugated Materials: Synthetic Scale-Up, Solar Cell Performance, and Cost Analyses
journal, October 2018

  • Pappenfus, Ted M.; Almyahi, Furqan; Cooling, Nathan A.
  • Macromolecular Chemistry and Physics, Vol. 219, Issue 21
  • DOI: 10.1002/macp.201800272

The Generation of Nanoparticles in Miniemulsions
journal, May 2001


Review on Life Cycle Assessment of Solar Photovoltaic Panels
journal, January 2020

  • Muteri, Vincenzo; Cellura, Maurizio; Curto, Domenico
  • Energies, Vol. 13, Issue 1
  • DOI: 10.3390/en13010252

The origin of performance limitations in miniemulsion nanoparticulate organic photovoltaic devices
journal, February 2018

  • Al-Mudhaffer, Mohammed F.; Griffith, Matthew J.; Feron, Krishna
  • Solar Energy Materials and Solar Cells, Vol. 175
  • DOI: 10.1016/j.solmat.2017.09.007

Robot-Based High-Throughput Engineering of Alcoholic Polymer: Fullerene Nanoparticle Inks for an Eco-Friendly Processing of Organic Solar Cells
journal, June 2018

  • Xie, Chen; Tang, Xiaofeng; Berlinghof, Marvin
  • ACS Applied Materials & Interfaces, Vol. 10, Issue 27
  • DOI: 10.1021/acsami.8b03621

Determining exciton coherence from the photoluminescence spectral line shape in poly(3-hexylthiophene) thin films
journal, February 2009

  • Spano, Frank C.; Clark, Jenny; Silva, Carlos
  • The Journal of Chemical Physics, Vol. 130, Issue 7
  • DOI: 10.1063/1.3076079

Control of Ostwald Ripening by Using Surfactants with High Surface Modulus
journal, November 2011

  • Tcholakova, Slavka; Mitrinova, Zlatina; Golemanov, Konstantin
  • Langmuir, Vol. 27, Issue 24
  • DOI: 10.1021/la203952p

Surfactant Free P3HT ∕ PCBM Nanoparticles for Organic Photovoltaics (OPV)
conference, January 2011

  • Darwis, Darmawati; Elkington, Daniel; Sesa, Elisa
  • AIP Conference Proceedings
  • DOI: 10.1063/1.3667236

Interferometer-controlled scanning transmission X-ray microscopes at the Advanced Light Source
journal, February 2003

  • Kilcoyne, A. L. D.; Tyliszczak, T.; Steele, W. F.
  • Journal of Synchrotron Radiation, Vol. 10, Issue 2
  • DOI: 10.1107/s0909049502017739

Charge generation and morphology in P3HT : PCBM nanoparticles prepared by mini-emulsion and reprecipitation methods
journal, January 2015

  • Schwarz, Kyra N.; Farley, Sam B.; Smith, Trevor A.
  • Nanoscale, Vol. 7, Issue 47
  • DOI: 10.1039/c5nr06244f

18% Efficiency organic solar cells
journal, February 2020


Nano-pathways: Bridging the divide between water-processable nanoparticulate and bulk heterojunction organic photovoltaics
journal, January 2016


Determining the structural motif of P3HT:PCBM nanoparticulate organic photovoltaic devices
journal, March 2013


Tuning the size and morphology of P3HT/PCBM composite nanoparticles: towards optimized water-processable organic solar cells
journal, January 2020

  • Ghazy, Omayma; Freisinger, Birger; Lieberwith, Ingo
  • Nanoscale, Vol. 12, Issue 44
  • DOI: 10.1039/d0nr05847e

Optimisation of purification techniques for the preparation of large-volume aqueous solar nanoparticle inks for organic photovoltaics
journal, February 2018

  • Almyahi, Furqan; Andersen, Thomas R.; Cooling, Nathan A.
  • Beilstein Journal of Nanotechnology, Vol. 9
  • DOI: 10.3762/bjnano.9.60

Building intermixed donor–acceptor architectures for water-processable organic photovoltaics
journal, January 2019

  • Marks, Melissa; Holmes, Natalie P.; Sharma, Anirudh
  • Physical Chemistry Chemical Physics, Vol. 21, Issue 10
  • DOI: 10.1039/c8cp07137c

Current status, challenges and future outlook of high performance polymer semiconductors for organic photovoltaics modules
journal, April 2019


A low-cost mixed fullerene acceptor blend for printed electronics
journal, January 2016

  • Cooling, N. A.; Barnes, E. F.; Almyahi, F.
  • Journal of Materials Chemistry A, Vol. 4, Issue 26
  • DOI: 10.1039/c6ta04191d

Bulk heterojunction organic photovoltaics from water-processable nanomaterials and their facile fabrication approaches
journal, September 2016

  • Subianto, Surya; Dutta, Naba; Andersson, Mats
  • Advances in Colloid and Interface Science, Vol. 235
  • DOI: 10.1016/j.cis.2016.05.013

Enhanced photocatalytic hydrogen evolution from organic semiconductor heterojunction nanoparticles
journal, February 2020


Nanomorphology of eco-friendly colloidal inks, relating non-fullerene acceptor surface energy to structure formation
journal, January 2021

  • Barr, Matthew G.; Chambon, Sylvain; Fahy, Adam
  • Materials Chemistry Frontiers, Vol. 5, Issue 5
  • DOI: 10.1039/d0qm00980f

Nano-domain behaviour in P3HT:PCBM nanoparticles, relating material properties to morphological changes
journal, October 2013


Surface energy of nanoparticles – influence of particle size and structure
journal, January 2018

  • Vollath, Dieter; Fischer, Franz Dieter; Holec, David
  • Beilstein Journal of Nanotechnology, Vol. 9
  • DOI: 10.3762/bjnano.9.211

Sulfonated Thiophene Derivative Stabilized Aqueous Poly(3-hexylthiophene):Phenyl-C 61 -butyric Acid Methyl Ester Nanoparticle Dispersion for Organic Solar Cell Applications
journal, November 2018

  • Subianto, Surya; Balu, Rajkamal; de Campo, Liliana
  • ACS Applied Materials & Interfaces, Vol. 10, Issue 50
  • DOI: 10.1021/acsami.8b15589

Eco-friendly fabrication of PBDTTPD:PC71BM solar cells reaching a PCE of 3.8% using water-based nanoparticle dispersions
journal, March 2017


Preparation and Characterization of Fulleroid and Methanofullerene Derivatives
journal, February 1995

  • Hummelen, Jan C.; Knight, Brian W.; LePeq, F.
  • The Journal of Organic Chemistry, Vol. 60, Issue 3
  • DOI: 10.1021/jo00108a012

Ostwald Ripening and Related Phenomena
journal, February 2001

  • Kabalnov, Alexey
  • Journal of Dispersion Science and Technology, Vol. 22, Issue 1
  • DOI: 10.1081/dis-100102675

Recent advances in solar photovoltaic systems for emerging trends and advanced applications
journal, January 2016

  • Pandey, A. K.; Tyagi, V. V.; Selvaraj, Jeyraj A/L
  • Renewable and Sustainable Energy Reviews, Vol. 53
  • DOI: 10.1016/j.rser.2015.09.043

Green-solvent-processable organic solar cells
journal, November 2016


Role of Stabilizing Surfactants on Capacitance, Charge, and Ion Transport in Organic Nanoparticle-Based Electronic Devices
journal, February 2019

  • Ameri, Mohsen; Al-Mudhaffer, Mohammed F.; Almyahi, Furqan
  • ACS Applied Materials & Interfaces, Vol. 11, Issue 10
  • DOI: 10.1021/acsami.8b19820