DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Building intermixed donor–acceptor architectures for water-processable organic photovoltaics

Abstract

A modified synthesis method for aqueous nanoparticle printing inks, based upon vacuum-assisted solvent removal, is reported. Poly(3-hexylthiophene):phenyl C61 butyric acid methyl ester nanoparticle inks were prepared via this modified miniemulsion method, leading to both an improvement in photoactive layer morphology and a substantial reduction in the ink fabrication time. A combination of UV-visible spectroscopy, photoluminescence spectroscopy and scanning transmission X-ray microscopy measurements revealed a nanoparticle morphology comprising highly intermixed donor–acceptor domains. Consistent with these measurements, dynamic mechanical thermal analysis of the nanoparticles showed a glass transition temperature (Tg) of 104 °C, rather than a pure polymer phase or pure fullerene phase Tg. Together the spectroscopy, microscopy and thermomechanical data indicate that rapid solvent removal generates a more blended nanoparticle morphology. As such, this study highlights a new experimental lever for optimising nanostructure in the photoactive layer of nanoparticulate organic photovoltaic devices by enabling highly intermixed donor–acceptor architectures to be built from customised nanoparticulate inks.

Authors:
 [1]; ORCiD logo [1]; ORCiD logo [2];  [3];  [1];  [1];  [1];  [1]; ORCiD logo [4]; ORCiD logo [5];  [3]; ORCiD logo [3];  [1];  [1]
  1. Univ. of Newcastle, Callaghan, NSW (Australia). Centre for Organic Electronics
  2. Flinders Univ., Adelaide, SA (Australia). Flinders Inst. for Nanoscale Science and Technology; Univ. of Bordeaux (France). Lab. de Chimie des Polymères Organiques (LCPO)
  3. Flinders Univ., Adelaide, SA (Australia). Flinders Inst. for Nanoscale Science and Technology
  4. Univ. of Newcastle, Callaghan, NSW (Australia). Centre for Organic Electronics; CSIRO Energy Centre, Mayfield West, NSW (Australia)
  5. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Advanced Light Source (ALS)
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); Australian Research Council (ARC)
OSTI Identifier:
1603507
Grant/Contract Number:  
AC02-05CH11231
Resource Type:
Accepted Manuscript
Journal Name:
Physical Chemistry Chemical Physics. PCCP
Additional Journal Information:
Journal Volume: 21; Journal Issue: 10; Journal ID: ISSN 1463-9076
Publisher:
Royal Society of Chemistry
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; Nanostructure; morphology; organic photovoltaic; scanning transmission X-ray microscopy; exciton dissociation; colloidal inks; eco-friendly processing

Citation Formats

Marks, Melissa, Holmes, Natalie P., Sharma, Anirudh, Pan, Xun, Chowdhury, Riku, Barr, Matthew G., Fenn, Coralie, Griffith, Matthew J., Feron, Krishna, Kilcoyne, A. L. David, Lewis, David A., Andersson, Mats R., Belcher, Warwick J., and Dastoor, Paul C. Building intermixed donor–acceptor architectures for water-processable organic photovoltaics. United States: N. p., 2019. Web. doi:10.1039/c8cp07137c.
Marks, Melissa, Holmes, Natalie P., Sharma, Anirudh, Pan, Xun, Chowdhury, Riku, Barr, Matthew G., Fenn, Coralie, Griffith, Matthew J., Feron, Krishna, Kilcoyne, A. L. David, Lewis, David A., Andersson, Mats R., Belcher, Warwick J., & Dastoor, Paul C. Building intermixed donor–acceptor architectures for water-processable organic photovoltaics. United States. https://doi.org/10.1039/c8cp07137c
Marks, Melissa, Holmes, Natalie P., Sharma, Anirudh, Pan, Xun, Chowdhury, Riku, Barr, Matthew G., Fenn, Coralie, Griffith, Matthew J., Feron, Krishna, Kilcoyne, A. L. David, Lewis, David A., Andersson, Mats R., Belcher, Warwick J., and Dastoor, Paul C. Tue . "Building intermixed donor–acceptor architectures for water-processable organic photovoltaics". United States. https://doi.org/10.1039/c8cp07137c. https://www.osti.gov/servlets/purl/1603507.
@article{osti_1603507,
title = {Building intermixed donor–acceptor architectures for water-processable organic photovoltaics},
author = {Marks, Melissa and Holmes, Natalie P. and Sharma, Anirudh and Pan, Xun and Chowdhury, Riku and Barr, Matthew G. and Fenn, Coralie and Griffith, Matthew J. and Feron, Krishna and Kilcoyne, A. L. David and Lewis, David A. and Andersson, Mats R. and Belcher, Warwick J. and Dastoor, Paul C.},
abstractNote = {A modified synthesis method for aqueous nanoparticle printing inks, based upon vacuum-assisted solvent removal, is reported. Poly(3-hexylthiophene):phenyl C61 butyric acid methyl ester nanoparticle inks were prepared via this modified miniemulsion method, leading to both an improvement in photoactive layer morphology and a substantial reduction in the ink fabrication time. A combination of UV-visible spectroscopy, photoluminescence spectroscopy and scanning transmission X-ray microscopy measurements revealed a nanoparticle morphology comprising highly intermixed donor–acceptor domains. Consistent with these measurements, dynamic mechanical thermal analysis of the nanoparticles showed a glass transition temperature (Tg) of 104 °C, rather than a pure polymer phase or pure fullerene phase Tg. Together the spectroscopy, microscopy and thermomechanical data indicate that rapid solvent removal generates a more blended nanoparticle morphology. As such, this study highlights a new experimental lever for optimising nanostructure in the photoactive layer of nanoparticulate organic photovoltaic devices by enabling highly intermixed donor–acceptor architectures to be built from customised nanoparticulate inks.},
doi = {10.1039/c8cp07137c},
journal = {Physical Chemistry Chemical Physics. PCCP},
number = 10,
volume = 21,
place = {United States},
year = {Tue Feb 19 00:00:00 EST 2019},
month = {Tue Feb 19 00:00:00 EST 2019}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 19 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Ternary organic solar cells offer 14% power conversion efficiency
journal, December 2017


On the Glass Transition of Polymer Semiconductors and Its Impact on Polymer Solar Cell Stability
journal, March 2015


Room to Improve Conjugated Polymer-Based Solar Cells: Understanding How Thermal Annealing Affects the Fullerene Component of a Bulk Heterojunction Photovoltaic Device
journal, November 2008

  • Ayzner, Alexander L.; Wanger, Darcy D.; Tassone, Christopher J.
  • The Journal of Physical Chemistry C, Vol. 112, Issue 48
  • DOI: 10.1021/jp8076497

Robot-Based High-Throughput Engineering of Alcoholic Polymer: Fullerene Nanoparticle Inks for an Eco-Friendly Processing of Organic Solar Cells
journal, June 2018

  • Xie, Chen; Tang, Xiaofeng; Berlinghof, Marvin
  • ACS Applied Materials & Interfaces, Vol. 10, Issue 27
  • DOI: 10.1021/acsami.8b03621

The origin of performance limitations in miniemulsion nanoparticulate organic photovoltaic devices
journal, February 2018

  • Al-Mudhaffer, Mohammed F.; Griffith, Matthew J.; Feron, Krishna
  • Solar Energy Materials and Solar Cells, Vol. 175
  • DOI: 10.1016/j.solmat.2017.09.007

Surfactant-free nanoparticulate organic photovoltaics
journal, February 2014


Interferometer-controlled scanning transmission X-ray microscopes at the Advanced Light Source
journal, February 2003

  • Kilcoyne, A. L. D.; Tyliszczak, T.; Steele, W. F.
  • Journal of Synchrotron Radiation, Vol. 10, Issue 2
  • DOI: 10.1107/S0909049502017739

Determining exciton coherence from the photoluminescence spectral line shape in poly(3-hexylthiophene) thin films
journal, February 2009

  • Spano, Frank C.; Clark, Jenny; Silva, Carlos
  • The Journal of Chemical Physics, Vol. 130, Issue 7
  • DOI: 10.1063/1.3076079

Multiscale Active Layer Morphologies for Organic Photovoltaics Through Self-Assembly of Nanospheres
journal, August 2014

  • Gehan, Timothy S.; Bag, Monojit; Renna, Lawrence A.
  • Nano Letters, Vol. 14, Issue 9
  • DOI: 10.1021/nl502209s

Aqueous Processing of Low-Band-Gap Polymer Solar Cells Using Roll-to-Roll Methods
journal, April 2011

  • Andersen, Thomas R.; Larsen-Olsen, Thue T.; Andreasen, Birgitta
  • ACS Nano, Vol. 5, Issue 5
  • DOI: 10.1021/nn200933r

Nano-pathways: Bridging the divide between water-processable nanoparticulate and bulk heterojunction organic photovoltaics
journal, January 2016


Fabrication conditions for efficient organic photovoltaic cells from aqueous dispersions of nanoparticles
journal, January 2014

  • Bag, Monojit; Gehan, Timothy S.; Renna, Lawrence A.
  • RSC Adv., Vol. 4, Issue 85
  • DOI: 10.1039/C4RA07463G

Determining the structural motif of P3HT:PCBM nanoparticulate organic photovoltaic devices
journal, March 2013


Unravelling the Thermomechanical Properties of Bulk Heterojunction Blends in Polymer Solar Cells
journal, April 2017


Preparation and Characterization of Water Self-dispersible Poly(3-hexylthiophene) Particles
journal, November 2007


Nano-domain behaviour in P3HT:PCBM nanoparticles, relating material properties to morphological changes
journal, October 2013


Roll-to-Roll Printed Large-Area All-Polymer Solar Cells with 5% Efficiency Based on a Low Crystallinity Conjugated Polymer Blend
journal, March 2017


High Efficiency Polymer Solar Cells with Long Operating Lifetimes
journal, April 2011

  • Peters, Craig H.; Sachs-Quintana, I. T.; Kastrop, John P.
  • Advanced Energy Materials, Vol. 1, Issue 4
  • DOI: 10.1002/aenm.201100138

Preparation and Characterization of Fulleroid and Methanofullerene Derivatives
journal, February 1995

  • Hummelen, Jan C.; Knight, Brian W.; LePeq, F.
  • The Journal of Organic Chemistry, Vol. 60, Issue 3
  • DOI: 10.1021/jo00108a012

Cost analysis of roll-to-roll fabricated ITO free single and tandem organic solar modules based on data from manufacture
journal, January 2014

  • Machui, Florian; Hösel, Markus; Li, Ning
  • Energy & Environmental Science, Vol. 7, Issue 9
  • DOI: 10.1039/C4EE01222D

Green-solvent-processable organic solar cells
journal, November 2016


Semiconducting Polymer Nanospheres in Aqueous Dispersion Prepared by a Miniemulsion Process
journal, May 2002


Water-based nanoparticulate solar cells using a diketopyrrolopyrrole donor polymer
journal, January 2014

  • Vaughan, Ben; Williams, Evan L.; Holmes, Natalie P.
  • Physical Chemistry Chemical Physics, Vol. 16, Issue 6
  • DOI: 10.1039/c3cp55037k

Efficient Charge Transport in Assemblies of Surfactant-Stabilized Semiconducting Nanoparticles
journal, August 2013

  • Bag, Monojit; Gehan, Timothy S.; Algaier, Dana D.
  • Advanced Materials, Vol. 25, Issue 44
  • DOI: 10.1002/adma.201301302

Eco-Friendly Fabrication of 4% Efficient Organic Solar Cells from Surfactant-Free P3HT:ICBA Nanoparticle Dispersions
journal, September 2014

  • Gärtner, Stefan; Christmann, Marco; Sankaran, Sivaramakrishnan
  • Advanced Materials, Vol. 26, Issue 38
  • DOI: 10.1002/adma.201402360

Analysis of Charge Transport and Device Performance in Organic Photovoltaic Devices with Active Layers of Self-Assembled Nanospheres
journal, November 2015

  • Han, Xu; Bag, Monojit; Gehan, Timothy S.
  • The Journal of Physical Chemistry C, Vol. 119, Issue 46
  • DOI: 10.1021/acs.jpcc.5b09421

25th Anniversary Article: Rise to Power - OPV-Based Solar Parks
journal, October 2013

  • Krebs, Frederik C.; Espinosa, Nieves; Hösel, Markus
  • Advanced Materials, Vol. 26, Issue 1
  • DOI: 10.1002/adma.201302031

Probing the origin of photocurrent in nanoparticulate organic photovoltaics
journal, September 2015

  • Holmes, Natalie P.; Nicolaidis, Nicolas; Feron, Krishna
  • Solar Energy Materials and Solar Cells, Vol. 140
  • DOI: 10.1016/j.solmat.2015.04.044

Structural and photo-physical properties of spin-coated poly(3-hexylthiophene) thin films
journal, July 2009


The effect of polymer molecular weight on P3HT:PCBM nanoparticulate organic photovoltaic device performance
journal, September 2014


A Phase Diagram of the P3HT:PCBM Organic Photovoltaic System: Implications for Device Processing and Performance
journal, April 2011

  • Hopkinson, Paul E.; Staniec, Paul A.; Pearson, Andrew J.
  • Macromolecules, Vol. 44, Issue 8
  • DOI: 10.1021/ma102524a

Overcoming efficiency and stability limits in water-processing nanoparticular organic photovoltaics by minimizing microstructure defects
journal, December 2018


25th Anniversary Article: Bulk Heterojunction Solar Cells: Understanding the Mechanism of Operation
journal, December 2013


Engineering the vertical concentration distribution within the polymer:fullerene blends for high performance inverted polymer solar cells
journal, January 2017

  • Wang, Yaping; Zhu, Honglu; Shi, Zhenzhen
  • Journal of Materials Chemistry A, Vol. 5, Issue 5
  • DOI: 10.1039/C6TA10678A

Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions
journal, December 1995


Sub-glass transition annealing enhances polymer solar cell performance
journal, January 2014

  • Bergqvist, Jonas; Lindqvist, Camilla; Bäcke, Olof
  • J. Mater. Chem. A, Vol. 2, Issue 17
  • DOI: 10.1039/C3TA14165A

The future of organic photovoltaics
journal, January 2015

  • Mazzio, Katherine A.; Luscombe, Christine K.
  • Chemical Society Reviews, Vol. 44, Issue 1
  • DOI: 10.1039/C4CS00227J

Engineering Two-Phase and Three-Phase Microstructures from Water-Based Dispersions of Nanoparticles for Eco-Friendly Polymer Solar Cell Applications
journal, August 2018


Aqueous Nanoparticle Polymer Solar Cells: Effects of Surfactant Concentration and Processing on Device Performance
journal, April 2017

  • Colberts, Fallon J. M.; Wienk, Martijn M.; Janssen, René A. J.
  • ACS Applied Materials & Interfaces, Vol. 9, Issue 15
  • DOI: 10.1021/acsami.7b00557

Diketopyrrolopyrrole-based polymer:fullerene nanoparticle films with thermally stable morphology for organic photovoltaic applications
journal, February 2017

  • Holmes, Natalie P.; Vaughan, Ben; Williams, Evan L.
  • MRS Communications, Vol. 7, Issue 1
  • DOI: 10.1557/mrc.2017.3

Fabrication of polymer solar cells from organic nanoparticle dispersions by doctor blading or ink-jet printing
journal, January 2016


Incorporating an Electrode Modification Layer with a Vertical Phase Separated Photoactive Layer for Efficient and Stable Inverted Nonfullerene Polymer Solar Cells
journal, December 2017

  • Shi, Zhenzhen; Liu, Hao; Wang, Yaping
  • ACS Applied Materials & Interfaces, Vol. 9, Issue 50
  • DOI: 10.1021/acsami.7b13494

Charge transport model for photovoltaic devices based on printed polymer: Fullerene nanoparticles
journal, October 2015

  • Yamamoto, Natasha A. D.; Payne, Margaret E.; Koehler, Marlus
  • Solar Energy Materials and Solar Cells, Vol. 141
  • DOI: 10.1016/j.solmat.2015.05.034

Overcoming Microstructural Limitations in Water Processed Organic Solar Cells by Engineering Customized Nanoparticulate Inks
journal, January 2018

  • Xie, Chen; Classen, Andrej; Späth, Andreas
  • Advanced Energy Materials, Vol. 8, Issue 13
  • DOI: 10.1002/aenm.201702857

Eco-friendly fabrication of PBDTTPD:PC71BM solar cells reaching a PCE of 3.8% using water-based nanoparticle dispersions
journal, March 2017


Spray coated silver nanowires as transparent electrodes in OPVs for Building Integrated Photovoltaics applications
journal, December 2016


Regiocontrolled Synthesis of Poly(3-alkylthiophenes) Mediated by Rieke Zinc: Their Characterization and Solid-State Properties
journal, January 1995

  • Chen, Tian-An; Wu, Xiaoming; Rieke, Reuben D.
  • Journal of the American Chemical Society, Vol. 117, Issue 1, p. 233-244
  • DOI: 10.1021/ja00106a027

Works referencing / citing this record:

Green-solvent-processable strategies for achieving large-scale manufacture of organic photovoltaics
journal, January 2019

  • Ma, Zongwen; Zhao, Biao; Gong, Yongshuai
  • Journal of Materials Chemistry A, Vol. 7, Issue 40
  • DOI: 10.1039/c9ta09277c

Manipulating nanoscale structure to control functionality in printed organic photovoltaic, transistor and bioelectronic devices
journal, December 2019

  • Griffith, Matthew J.; Holmes, Natalie P.; Elkington, Daniel C.
  • Nanotechnology, Vol. 31, Issue 9
  • DOI: 10.1088/1361-6528/ab57d0