DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Mott localization in a pure stripe antiferromagnet Rb 1 - δ Fe 1.5 - σ S 2

Abstract

A combination of neutron diffraction and angle-resolved photoemission spectroscopy measurements on a pure antiferromagnetic stripe $${\mathrm{Rb}}_{1{-}{\delta}}{\mathrm{Fe}}_{1.5{-}{\sigma}}{\mathrm{S}}_{2}$$ is reported here. A neutron diffraction experiment on a powder sample shows that a $98$% volume fraction of the sample is in the antiferromagnetic stripe phase with rhombic iron vacancy order and a refined composition of $${\mathrm{Rb}}_{0.66}{\mathrm{Fe}}_{1.36}{\mathrm{S}}_{2}$$, and that only $$2$$% of the sample is in the block antiferromagnetic phase with $$\sqrt{5}\times{}\sqrt{5}$$ iron vacancy order. Furthermore, a neutron diffraction experiment on a single crystal shows that there is only a single phase with the stripe antiferromagnetic order with the refined composition of $${\mathrm{Rb}}_{0.78}{\mathrm{Fe}}_{1.35}{\mathrm{S}}_{2}$$, while the phase with block antiferromagnetic order is absent. Angle-resolved photoemission spectroscopy measurements on the same crystal with the pure stripe phase reveal that the electronic structure is gapped at the Fermi level with a gap larger than 0.325 eV. The data collectively demonstrate that the extra $10$% iron vacancies in addition to the rhombic iron vacancy order effectively impede the formation of the block antiferromagnetic phase; the data also suggest that the stripe antiferromagnetic phase with rhombic iron vacancy order is a Mott insulator.

Authors:
 [1];  [1];  [2];  [2];  [3];  [4];  [5];  [6];  [7];  [8];  [9]
  1. Univ. of California, Berkeley, CA (United States). Dept. of Physics
  2. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Quantum Condensed Matter Division
  3. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Advanced Light Source
  4. National Inst. of Standards and Technology (NIST), Gaithersburg, MD (United States). NIST Center for Neutron Research
  5. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Science Division
  6. Rice Univ., Houston, TX (United States). Dept. of Physics and Astronomy
  7. Univ. of California, Berkeley, CA (United States). Dept. of Physics; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Science Division
  8. SLAC National Accelerator Lab., Menlo Park, CA (United States). Stanford Inst. for Materials and Energy Sciences; Stanford Univ., CA (United States). Dept. of Physics and Applied Physics. Geballe Lab. for Advanced Materials
  9. Univ. of California, Berkeley, CA (United States). Dept. of Physics. Dept. of Materials Science and Engineering; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Science Division
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1512245
Alternate Identifier(s):
OSTI ID: 1213754
Grant/Contract Number:  
AC02-05CH11231; SC0012311; AC02-76SF00515
Resource Type:
Accepted Manuscript
Journal Name:
Physical Review. B, Condensed Matter and Materials Physics
Additional Journal Information:
Journal Volume: 92; Journal Issue: 12; Journal ID: ISSN 1098-0121
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY

Citation Formats

Wang, Meng, Yi, Ming, Cao, Huibo, de la Cruz, C., Mo, S. K., Huang, Q. Z., Bourret-Courchesne, E., Dai, Pengcheng, Lee, D. H., Shen, Z. X., and Birgeneau, R. J. Mott localization in a pure stripe antiferromagnet Rb1-δFe1.5-σS2. United States: N. p., 2015. Web. doi:10.1103/PhysRevB.92.121101.
Wang, Meng, Yi, Ming, Cao, Huibo, de la Cruz, C., Mo, S. K., Huang, Q. Z., Bourret-Courchesne, E., Dai, Pengcheng, Lee, D. H., Shen, Z. X., & Birgeneau, R. J. Mott localization in a pure stripe antiferromagnet Rb1-δFe1.5-σS2. United States. https://doi.org/10.1103/PhysRevB.92.121101
Wang, Meng, Yi, Ming, Cao, Huibo, de la Cruz, C., Mo, S. K., Huang, Q. Z., Bourret-Courchesne, E., Dai, Pengcheng, Lee, D. H., Shen, Z. X., and Birgeneau, R. J. Tue . "Mott localization in a pure stripe antiferromagnet Rb1-δFe1.5-σS2". United States. https://doi.org/10.1103/PhysRevB.92.121101. https://www.osti.gov/servlets/purl/1512245.
@article{osti_1512245,
title = {Mott localization in a pure stripe antiferromagnet Rb1-δFe1.5-σS2},
author = {Wang, Meng and Yi, Ming and Cao, Huibo and de la Cruz, C. and Mo, S. K. and Huang, Q. Z. and Bourret-Courchesne, E. and Dai, Pengcheng and Lee, D. H. and Shen, Z. X. and Birgeneau, R. J.},
abstractNote = {A combination of neutron diffraction and angle-resolved photoemission spectroscopy measurements on a pure antiferromagnetic stripe ${\mathrm{Rb}}_{1{-}{\delta}}{\mathrm{Fe}}_{1.5{-}{\sigma}}{\mathrm{S}}_{2}$ is reported here. A neutron diffraction experiment on a powder sample shows that a $98$% volume fraction of the sample is in the antiferromagnetic stripe phase with rhombic iron vacancy order and a refined composition of ${\mathrm{Rb}}_{0.66}{\mathrm{Fe}}_{1.36}{\mathrm{S}}_{2}$, and that only $2$% of the sample is in the block antiferromagnetic phase with $\sqrt{5}\times{}\sqrt{5}$ iron vacancy order. Furthermore, a neutron diffraction experiment on a single crystal shows that there is only a single phase with the stripe antiferromagnetic order with the refined composition of ${\mathrm{Rb}}_{0.78}{\mathrm{Fe}}_{1.35}{\mathrm{S}}_{2}$, while the phase with block antiferromagnetic order is absent. Angle-resolved photoemission spectroscopy measurements on the same crystal with the pure stripe phase reveal that the electronic structure is gapped at the Fermi level with a gap larger than 0.325 eV. The data collectively demonstrate that the extra $10$% iron vacancies in addition to the rhombic iron vacancy order effectively impede the formation of the block antiferromagnetic phase; the data also suggest that the stripe antiferromagnetic phase with rhombic iron vacancy order is a Mott insulator.},
doi = {10.1103/PhysRevB.92.121101},
journal = {Physical Review. B, Condensed Matter and Materials Physics},
number = 12,
volume = 92,
place = {United States},
year = {Tue Sep 01 00:00:00 EDT 2015},
month = {Tue Sep 01 00:00:00 EDT 2015}
}

Journal Article:

Citation Metrics:
Cited by: 11 works
Citation information provided by
Web of Science

Figures / Tables:

FIG. 1 FIG. 1: (a) A schematic for the iron plane with rhombic vacancy order of the 234 phase. The grey shaded area represents the tetragonal unit cell we used. (b) The reciprocal space corresponding to the tetragonal unit cell, which is the notation used throughout the paper. The closed and openmore » circles show the wave vectors of the magnetic peaks at $L$ = odd and the nuclear peaks at $L$ = even of the 234 phase in the [$H$$T$ , $K$$T$ ] plane, respectively. (c) Neutron powder diffraction spectrum at 500 K. Refinement shows a 98% volume fraction in the 234 phase with a composition of Rb0.66Fe1.36S2 and a 2% volume fraction in the 245 phase with a composition of Rb0.8Fe1.6S2.« less

Save / Share:

Works referenced in this record:

Nodeless superconducting gap in AxFe2Se2 (A=K,Cs) revealed by angle-resolved photoemission spectroscopy
journal, February 2011

  • Zhang, Y.; Yang, L. X.; Xu, M.
  • Nature Materials, Vol. 10, Issue 4
  • DOI: 10.1038/nmat2981

Superconductivity in the PbO-type structure  -FeSe
journal, September 2008

  • Hsu, F. -C.; Luo, J. -Y.; Yeh, K. -W.
  • Proceedings of the National Academy of Sciences, Vol. 105, Issue 38
  • DOI: 10.1073/pnas.0807325105

Identification of Various Coexisting Phases in Superconducting and Non-superconducting Samples of Rb x Fe 2− y Se 2
journal, April 2015

  • Kobayashi, Yoshiaki; Kototani, Shohei; Ohishi, Kazuki
  • Journal of the Physical Society of Japan, Vol. 84, Issue 4
  • DOI: 10.7566/JPSJ.84.044710

Unconventional Superconductivity with a Sign Reversal in the Order Parameter of LaFeAsO 1 x F x
journal, July 2008


Fe-based superconductivity with T c =31 K bordering an antiferromagnetic insulator in (Tl,K) Fe x Se 2
journal, April 2011


Two spatially separated phases in semiconducting Rb 0.8 Fe 1.5 S 2
journal, September 2014


Phase relations in K x Fe 2 y Se 2 and the structure of superconducting K x Fe 2 Se 2 via high-resolution synchrotron diffraction
journal, November 2012


Mott Transition in Modulated Lattices and Parent Insulator of ( K , Tl ) y Fe x Se 2 Superconductors
journal, May 2011


Spin waves and spatially anisotropic exchange interactions in the S = 2 stripe antiferromagnet Rb 0.8 Fe 1.5 S 2
journal, July 2015


Interface-Induced High-Temperature Superconductivity in Single Unit-Cell FeSe Films on SrTiO 3
journal, March 2012


Superconductivity in LiFeO 2 Fe 2 Se 2 with anti-PbO-type spacer layers
journal, January 2014


A Novel Large Moment Antiferromagnetic Order in K 0.8 Fe 1.6 Se 2 Superconductor
journal, August 2011


Electronic Structures and Magnetic Order of Ordered-Fe-Vacancy Ternary Iron Selenides TlFe 1.5 Se 2 and A Fe 1.5 Se 2 ( A = K , Rb, or Cs)
journal, February 2011


Incommensurate Spin Fluctuations in High-Transition Temperature Superconductors
journal, August 1997


Antiferromagnetic order and superlattice structure in nonsuperconducting and superconducting Rb y Fe 1.6 + x Se 2
journal, September 2011


Observation of superconductivity at 30∼46K in AxFe2Se2(A = Li, Na, Ba, Sr, Ca, Yb and Eu)
journal, May 2012

  • Ying, T. P.; Chen, X. L.; Wang, G.
  • Scientific Reports, Vol. 2, Issue 1
  • DOI: 10.1038/srep00426

Enhancement of the superconducting transition temperature of FeSe by intercalation of a molecular spacer layer
journal, October 2012

  • Burrard-Lucas, Matthew; Free, David G.; Sedlmaier, Stefan J.
  • Nature Materials, Vol. 12, Issue 1
  • DOI: 10.1038/nmat3464

Superconductivity in the iron selenide K x Fe 2 Se 2 ( 0 x 1.0 )
journal, November 2010


Tellurium substitution effect on superconductivity of the α-phase iron selenide
journal, October 2008


A neutron and Mössbauer study of TlFexS2 compounds
journal, February 1986


Synthesis and crystal growth of Cs 0.8 (FeSe 0.98 ) 2 : a new iron-based superconductor with T c = 27 K
journal, January 2011


NMR Study in the Iron-Selenide Rb 0.74 Fe 1.6 Se 2 : Determination of the Superconducting Phase as Iron Vacancy-Free Rb 0.3 Fe 2 Se 2
journal, June 2012


Magnetic, transport, and optical properties of monolayer copper oxides
journal, July 1998


Structure and composition of the superconducting phase in alkali iron selenide K y Fe 1.6 + x Se 2
journal, April 2014


Electronic structure and Mott localization of iron-deficient TlFe 1 . 5 Se 2 with superstructures
journal, May 2011


Superconductivity at 32 K in single-crystalline Rb x Fe 2 y Se 2
journal, February 2011


Distinct Fermi Surface Topology and Nodeless Superconducting Gap in a ( Tl 0.58 Rb 0.42 ) Fe 1.72 Se 2 Superconductor
journal, March 2011


Colloquium : The unexpected properties of alkali metal iron selenide superconductors
journal, May 2013


Pressure-Driven Quantum Criticality in Iron-Selenide Superconductors
journal, May 2012


Synthesis and crystal growth of Cs0.8(FeSe0.98)2: a new iron-based superconductor withTc= 27 K
text, January 2011

  • Krzton-Maziopa, A.; Shermadini, Z.; Pomjakushina, E.
  • Institute of Physics Publishing
  • DOI: 10.5167/uzh-50800

Tellurium substitution effect on superconductivity of the alpha-phase Iron Selenide
text, January 2008


Synthesis and crystal growth of Cs0.8(FeSe0.98)2: a new iron-based superconductor with Tc=27K
text, January 2010


Enhancement of superconducting transition temperature of FeSe by intercalation of a molecular spacer layer
text, January 2012


Works referencing / citing this record:

High-temperature superconductivity in iron pnictides and chalcogenides
journal, March 2016


High Temperature Superconductivity in Iron Pnictides and Chalcogenides
text, January 2016


Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.