skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Recombinant anti-tenascin antibody constructs

Technical Report ·
DOI:https://doi.org/10.2172/890551· OSTI ID:890551

The general objective of this research is to combine genetically derived molecular constructs reactive with tenascin, with appropriate radionuclides and labeling methods in order to generate more effective diagnostic and therapeutic reagents for oncologic nuclear medicine. Tenascin, a polymorphic extracellular matrix glycoprotein, is of interest because of its high expression on glioma, melanoma, as well as prostate and breast carcinoma. Recently, we have also documented high levels of tenascin in lymphomas, particularly those of higher grade, making the potential clinical impact of tenascin-specific radiodiagnostics and therapeutics even greater. An essential feature of our work plan is the ability to exploit our extensive clinical experience in order to design second-generation constructs with properties which could improve clinical efficacy. To date, we have treated over 150 brain tumor patients with 131I-labeled murine 81C6, an antibody which binds specifically to the alternatively spliced fibronectin type III repeats CD of the tenascin molecule. During the current grant period, we have made several observations which form the basis for our proposed specific aims. First, tissue distribution and catabolism experiments in animal models have demonstrated enhanced stability for a chimeric construct composed of murine variable regions and human IgG2 constant domains. Furthermore, pharmacokinetic studies in patients with 131I-labeled chimeric 81C6 have shown significantly longer retention in glioma tumor resection cavities compared with its murine parent. Second, we have initiated the first clinical trial of an endoradiotherapeutic labeled with the 7.2-hr -particle emitter 211At. Twelve glioma patients have received 211At-labeled chimeric 81C6 directly into their brain tumor resection cavity, and very encouraging results have been obtained. Now that the feasibility of human studies with 211At, has been demonstrated, the development and evaluation of anti-tenascin constructs with optimized properties for use in tandem with short half life radionuclides such as 211At ( as well as 1.8-hr 18F for PET imaging) is warranted. Our specific aims are: 1) to construct a bivalent, anti-tenascin molecule containing murine 81C6 variable regions and the human IgG2 hinge region. Both the CH2 domain deletion construct (CH2) and F(ab’)2 will be investigated; 2) to construct a single-chain Fv dimer or multimer with adequate stability, affinity and immunoreactivity for use in tandem with 211At for therapy and 18F for imaging; 3) to generate higher affinity scFv constructs reactive with the alternatively spliced fibronectin type III repeats CD of the tenascin molecule via phage display technology and site-directed mutagenesis; 4) to label promising anti-tenascin constructs with radioiodine, 211At, and 18F and evaluate their potential as radiodiagnostic and radiotherapeutic agents. The proposed studies include: characterization of affinity and immunoreactivity after labeling; evaluation of tissue distribution and projected dosimetry in normal mice, and athymic rodents with subcutaneous, intracranial and neoplastic meningitis xenografts; investigation of the nature of low and high molecular weight labeled catabolites generated in mice; and assessment of cytotoxicity in vitro and in vivo models of human glioma, and possibly, other tenascin expressing tumors; and 5) to investigate strategies for labeling scFv monomers and dimers which will minimize retention of the radiohalogen in the kidneys through the use of negatively charged templates.

Research Organization:
DUKE UNIVERSITY MEDICAL CENTER
Sponsoring Organization:
USDOE - Office of Energy Research (ER)
DOE Contract Number:
FG02-95ER62021
OSTI ID:
890551
Report Number(s):
DOE/ER/62021-4; TRN: US0703161
Country of Publication:
United States
Language:
English