skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Osmoregulation in Methanogens (and Other Interesting Organisms)

Technical Report ·
DOI:https://doi.org/10.2172/1172319· OSTI ID:1172319
 [1]
  1. Boston College, Chestnut Hill, MA (United States)

Our research has been aimed at (i) identifying, (ii) determining mode of regulation, and (iii) understanding how different classes of compatible solutes (also termed osmolytes) affect macromolecular stability in response to osmotic and thermal stress. For solutes we have identified (e.g., di-inositol-1,1’-phosphate (DIP)), we used NMR to elucidate biosynthetic pathways and then cloned suspected enzymes in the pathway to explore how they are regulated. Compatible solutes are thought to protect proteins from thermal and osmotic stresses by being excluded from the surface, allowing critical water molecules to interact with the protein. This implies there are no specific binding interactions between osmolytes and proteins. However, we and others have often observed very specific solute effects for proteins that suggest a more direct interaction between solute and protein is likely can occur. Measuring such a weak interaction is extremely difficult. We have developed a solution NMR method, high-resolution field cycling relaxometry, that can measure spin-lattice relaxation rates as a function of magnetic field from 11.7 (the field of a 500 MHz spectrometer) to 0.003 T. The methodology is ideal for nuclei in small molecules with moderately long relaxation times at high fields – phosphate groups (31P), enriched carbonyls (13C), or methyl groups (1H). The protein of interest is spin-labeled to introduce a large dipole on it that will dominate the relaxation of nuclei on any small molecules that bind transiently. The key is to measure relaxation below 1-2 T (and extract nuclei-spin label distances in the bound complex) where the small molecule relaxation will be dominated by dipolar mechanisms with a correlation time indicative of the large protein complex. Our explorations of an inositol monophosphatase (the last step in DIP generation) localized four discrete binding sides for the thermoprotectant α-glutamate. This is a novel approach, and while the work did not fully explain how this solute protected the IMPase from thermal denaturation, it did showcase a new and exciting method to monitor weak binding in biological systems.

Research Organization:
Boston College, Chestnut Hill, MA (United States)
Sponsoring Organization:
USDOE Office of Science (SC)
DOE Contract Number:
FG02-91ER20025
OSTI ID:
1172319
Report Number(s):
DOE-ROBERTS-20025
Country of Publication:
United States
Language:
English