skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information
  1. Importance of different parameterization changes for the updated dust cycle modeling in the Community Atmosphere Model (version 6.1)

    Abstract. The Community Atmosphere Model (CAM6.1), the atmospheric component of the Community Earth System Model (CESM; version 2.1), simulates the life cycle (emission, transport, and deposition) of mineral dust and its interactions with physio-chemical components to quantify the impacts of dust on climate and the Earth system. The accuracy of such quantifications relies on how well dust-related processes are represented in the model. Here we update the parameterizations for the dust module, including those on the dust emission scheme, the aerosol dry deposition scheme, the size distribution of transported dust, and the treatment of dust particle shape. Multiple simulations weremore » undertaken to evaluate the model performance against diverse observations, and to understand how each update alters the modeled dust cycle and the simulated dust direct radiative effect. The model–observation comparisons suggest that substantially improved model representations of the dust cycle are achieved primarily through the new more physically-based dust emission scheme. In comparison, the other modifications induced small changes to the modeled dust cycle and model–observation comparisons, except the size distribution of dust in the coarse mode, which can be even more influential than that of replacing the dust emission scheme. We highlight which changes introduced here are important for which regions, shedding light on further dust model developments required for more accurately estimating interactions between dust and climate.« less
  2. Development and Evaluation of E3SM‐MOSAIC: Spatial Distributions and Radiative Effects of Nitrate Aerosol

    Nitrate aerosol plays an important role in affecting regional air quality as well as Earth's climate. However, it is not well represented or even neglected in many global climate models. In this study, we couple the Model for Simulating Aerosol Interactions and Chemistry (MOSAIC) module with the four-mode version of the Modal Aerosol Module (MAM4) in DOE's Energy Exascale Earth System Model version 2 (E3SMv2) to simulate nitrate aerosol and its radiative effects. We find that nitrate aerosol simulated by E3SMv2-MAM4-MOSAIC is sensitive to the treatment of gaseous HNO3 transfer to/from interstitial particles related to accommodation coefficients of HNO3HNO3)more » on dust and non-dust particles. We compare three different treatments of HNO3 transfer: (a) a treatment (MTC_SLOW) that uses a low αHNO3 in the mass transfer coefficient (MTC) calculation; (b) a dust-weighted MTC treatment (MTC_WGT) that uses a high αHNO3 on non-dust particles; and (c) a dust-weighted MTC treatment that also splits coarse mode aerosols into the coarse dust and sea salt sub-modes in MOSAIC (MTC_SPLC). MTC_WGT and MTC_SPLC increase the global annual mean (2005–2014) nitrate burden from 0.096 (MTC_SLOW) to 0.237 and 0.185 Tg N, respectively, mostly in the coarse mode. MTC_WGT and MTC_SPLC also produce stronger nitrate direct radiative forcing (-0.048 and -0.051 W m-2, respectively) and indirect forcing (-0.33 and -0.35 W m-2, respectively) than MTC_SLOW (-0.021 and -0.24 W m-2). MTC_WGT and MTC_SPLC improve nitrate surface concentrations over remote oceans based on limited observations and vertical profiles of nitrate concentrations against aircraft measurements below 400 hPa.« less
  3. Reconciling Observed and Predicted Tropical Rainforest OH Concentrations

    Abstract We present OH observations made in Amazonas, Brazil during the Green Ocean Amazon campaign (GoAmazon2014/5) from February to March of 2014. The average diurnal variation of OH peaked with a midday (10:00–15:00) average of 1.0 × 10 6 (±0.6 × 10 6 ) molecules cm −3 . This was substantially lower than previously reported in other tropical forest photochemical environments (2–5 × 10 6 molecules cm −3 ) while the simulated OH reactivity was lower. The observational data set was used to constrain a box model to examine how well current photochemical reaction mechanisms can simulate observed OH. We used one near‐explicit mechanism (MCM v3.3.1)more » and four condensed mechanisms (i.e., RACM2, MOZART‐T1, CB05, CB6r2) to simulate OH. A total of 14 days of analysis shows that all five chemical mechanisms were able to explain the measured OH within instrumental uncertainty of 40% during the campaign in the Amazonian rainforest environment. Future studies are required using more reliable NO x and VOC measurements to further investigate discrepancies in our understanding of the radical chemistry in the tropical rainforest.« less
  4. Radiative Forcing of Nitrate Aerosols From 1975 to 2010 as Simulated by MOSAIC Module in CESM2-MAM4

    In this work, we incorporate the Model for Simulating Aerosol Interactions and Chemistry (MOSAIC) module in the Community Earth System Model version 2 (CESM2) Community Atmosphere Model Version 6 with interactive chemistry (CAM6-chem), and couple it with the four mode version of the Modal Aerosol Module (MAM4). The MOSAIC module is used to simulate the thermodynamics of the gas-aerosol mass exchange, with a special focus on simulating nitrate aerosol. By comparing against ground and satellite observations, we found that the MOSAIC/MAM4 scheme performs reasonably well in simulating spatiotemporal distributions of aerosols, including nitrate aerosol. We conducted a series of modelmore » experiments with and without nitrate aerosols, and examined the radiative effect (RE) associated with nitrate aerosols in 1975, 2000, and 2010, and accessed the radiative forcing (RF) of nitrate aerosols between the present day and pre-industrial periods. Comparing with the nitrate aerosol RE, we predicted relatively small RF of anthropogenic nitrate aerosol from aerosol-radiation interactions (RFari: -0.014 W m-2) and large RF from aerosol-cloud interactions (RFaci: -0.219 W m-2). Regional signatures of nitrate RE/RF are noticeable and important: for instance, very small changes in REari in Europe and USA, but 2.8–3 times increases in REari in India and China from 1975 to 2010, while REaci/RFaci in China is a warming effect due to the competing effect between sulfate and nitrate aerosols as cloud condensation nuclei.« less
  5. Future changes in isoprene-epoxydiol-derived secondary organic aerosol (IEPOX SOA) under the Shared Socioeconomic Pathways: the importance of physicochemical dependency

    Abstract. Secondary organic aerosol (SOA) is a dominant contributor of fine particulate matter in the atmosphere, but the complexity of SOA formation chemistry hinders the accurate representation of SOA in models. Volatility-based SOA parameterizations have been adopted in many recent chemistry modeling studies and have shown a reasonable performance compared to observations. However, assumptions made in these empirical parameterizations can lead to substantial errors when applied to future climatic conditions as they do not include the mechanistic understanding of processes but are rather fitted to laboratory studies of SOA formation. This is particularly the case for SOA derived from isoprenemore » epoxydiols (IEPOX SOA), for which we have a higher level of understanding of the fundamental processes than is currently parameterized in most models. We predict future SOA concentrations using an explicit mechanism and compare the predictions with the empirical parameterization based on the volatility basis set (VBS) approach. We then use the Community Earth System Model 2 (CESM2.1.0) with detailed isoprene chemistry and reactive uptake processes for the middle and end of the 21st century under four Shared Socioeconomic Pathways (SSPs): SSP1–2.6, SSP2–4.5, SSP3–7.0, and SSP5–8.5. With the explicit chemical mechanism, we find that IEPOX SOA is predicted to increase on average under all future SSP scenarios but with some variability in the results depending on regions and the scenario chosen. Isoprene emissions are the main driver of IEPOX SOA changes in the future climate, but the IEPOX SOA yield from isoprene emissions also changes by up to 50 % depending on the SSP scenario, in particular due to different sulfur emissions. We conduct sensitivity simulations with and without CO2 inhibition of isoprene emissions that is highly uncertain, which results in factor of 2 differences in the predicted IEPOX SOA global burden, especially for the high-CO2 scenarios (SSP3–7.0 and SSP5–8.5). Aerosol pH also plays a critical role in the IEPOX SOA formation rate, requiring accurate calculation of aerosol pH in chemistry models. On the other hand, isoprene SOA calculated with the VBS scheme predicts a nearly constant SOA yield from isoprene emissions across all SSP scenarios; as a result, it mostly follows isoprene emissions regardless of region and scenario. This is because the VBS scheme does not consider heterogeneous chemistry; in other words, there is no dependency on aerosol properties. The discrepancy between the explicit mechanism and VBS parameterization in this study is likely to occur for other SOA components as well, which may also have dependencies that cannot be captured by VBS parameterizations. This study highlights the need for more explicit chemistry or for parameterizations that capture the dependence on key physicochemical drivers when predicting SOA concentrations for climate studies.« less
  6. Analysis of secondary organic aerosol simulation bias in the Community Earth System Model (CESM2.1)

    Organic aerosol (OA) has been considered as one of the most important uncertainties in climate modeling due to the complexity in presenting its chemical production and depletion mechanisms. To better understand the capability of climate models and probe into the associated uncertainties in simulating OA, we evaluate the Community Earth System Model version 2.1 (CESM2.1) configured with the Community Atmosphere Model version 6 (CAM6) with comprehensive tropospheric and stratospheric chemistry representation (CAM6-Chem) through a long-term simulation (1988–2019) with observations collected from multiple datasets in the United States. We find that CESM generally reproduces the interannual variation and seasonal cycle ofmore » OA mass concentration at surface layer with a correlation of 0.40 compared to ground observations and systematically overestimates (69%) in summer and underestimates (-19%) in winter. Through a series of sensitivity simulations, we reveal that modeling bias is primarily related to the dominant fraction of monoterpene-formed secondary organic aerosol (SOA), and a strong positive correlation of 0.67 is found between monoterpene emission and modeling bias in the eastern US during summer. In terms of vertical profile, the model prominently underestimates OA and monoterpene concentrations by 37%–99% and 82%–99%, respectively, in the upper air (>500 m) as validated against aircraft observations. Our study suggests that the current volatility basis set (VBS) scheme applied in CESM might be parameterized with monoterpene SOA yields that are too high, which subsequently results in strong SOA production near the emission source area. We also find that the model has difficulty in reproducing the decreasing trend of surface OA in the southeastern US probably because of employing pure gas VBS to represent isoprene SOA which is in reality mainly formed through multiphase chemistry; thus, the influence of aerosol acidity and sulfate particle change on isoprene SOA formation has not been fully considered in the model. This study reveals the urgent need to improve the SOA modeling in climate models.« less
  7. Development and Evaluation of Chemistry‐Aerosol‐Climate Model CAM5‐Chem‐MAM7‐MOSAIC: Global Atmospheric Distribution and Radiative Effects of Nitrate Aerosol

    Abstract An advanced aerosol treatment, with a focus on semivolatile nitrate formation, is introduced into the Community Atmosphere Model version 5 with interactive chemistry (CAM5‐chem) by coupling the Model for Simulating Aerosol Interactions and Chemistry (MOSAIC) with the 7‐mode Modal Aerosol Module (MAM7). An important feature of MOSAIC is dynamic partitioning of all condensable gases to the different fine and coarse mode aerosols, as governed by mode‐resolved thermodynamics and heterogeneous chemical reactions. Applied in the free‐running mode from 1995 to 2005 with prescribed historical climatological conditions, the model simulates global distributions of sulfate, nitrate, and ammonium in good agreement withmore » observations and previous studies. Inclusion of nitrate resulted in ∼10% higher global average accumulation mode number concentrations, indicating enhanced growth of Aitken mode aerosols from nitrate formation. While the simulated accumulation mode nitrate burdens are high over the anthropogenic source regions, the sea‐salt and dust modes respectively constitute about 74% and 17% of the annual global average nitrate burden. Regional clear‐sky shortwave radiative cooling of up to −5 W m −2 due to nitrate is seen, with a much smaller global average cooling of −0.05 W m −2 . Significant enhancements in regional cloud condensation nuclei (at 0.1% supersaturation) and cloud droplet number concentrations are also attributed to nitrate, causing an additional global average shortwave cooling of −0.8 W m −2 . Taking into consideration of changes in both longwave and shortwave radiation under all‐sky conditions, the net change in the top of the atmosphere radiative fluxes induced by including nitrate aerosol is −0.7 W m −2 .« less
  8. A simplified parameterization of isoprene-epoxydiol-derived secondary organic aerosol (IEPOX-SOA) for global chemistry and climate models: a case study with GEOS-Chem v11-02-rc

    Secondary organic aerosol derived from isoprene epoxydiols (IEPOX-SOA) is thought to contribute the dominant fraction of total isoprene SOA, but the current volatility-based lumped SOA parameterizations are not appropriate to represent the reactive uptake of IEPOX onto acidified aerosols. A full explicit modeling of this chemistry is however computationally expensive owing to the many species and reactions tracked, which makes it difficult to include it in chemistry–climate models for long-term studies. Here we present three simplified parameterizations (version 1.0) for IEPOX-SOA simulation, based on an approximate analytical/fitting solution of the IEPOX-SOA yield and formation timescale. The yield and timescale can thenmore » be directly calculated using the global model fields of oxidants, NO, aerosol pH and other key properties, and dry deposition rates. The advantage of the proposed parameterizations is that they do not require the simulation of the intermediates while retaining the key physicochemical dependencies. We have implemented the new parameterizations into the GEOS-Chem v11-02-rc chemical transport model, which has two empirical treatments for isoprene SOA (the volatility-basis-set, VBS, approach and a fixed 3% yield parameterization), and compared all of them to the case with detailed fully explicit chemistry. The best parameterization (PAR3) captures the global tropospheric burden of IEPOX-SOA and its spatiotemporal distribution (R2=0.94) vs. those simulated by the full chemistry, while being more computationally efficient (~5 times faster), and accurately captures the response to changes in NOx and SO2 emissions. On the other hand, the constant 3 % yield that is now the default in GEOS-Chem deviates strongly (R2=0.66), as does the VBS (R2=0.47, 49% underestimation), with neither parameterization capturing the response to emission changes. With the advent of new mass spectrometry instrumentation, many detailed SOA mechanisms are being developed, which will challenge global and especially climate models with their computational cost. The methods developed in this study can be applied to other SOA pathways, which can allow including accurate SOA simulations in climate and global modeling studies in the future.« less
  9. Understanding and improving model representation of aerosol optical properties for a Chinese haze event measured during KORUS-AQ

    KORUS-AQ was an international cooperative air quality field study in South Korea that measured local and remote sources of air pollution affecting the Korean Peninsula during May–June 2016. Some of the largest aerosol mass concentrations were measured during a Chinese haze transport event (24 May). Air quality forecasts using the WRF-Chem model with aerosol optical depth (AOD) data assimilation captured AOD during this pollution episode but overpredicted surface particulate matter concentrations in South Korea, especially PM2.5, often by a factor of 2 or larger. Analysis revealed multiple sources of model deficiency related to the calculation of optical properties from aerosol mass thatmore » explain these discrepancies. Using in situ observations of aerosol size and composition as inputs to the optical properties calculations showed that using a low-resolution size bin representation (four bins) underestimates the efficiency with which aerosols scatter and absorb light (mass extinction efficiency). Besides using finer-resolution size bins (8–16 bins), it was also necessary to increase the refractive indices and hygroscopicity of select aerosol species within the range of values reported in the literature to achieve better consistency with measured values of the mass extinction efficiency (6.7 m2 g–1 observed average) and light-scattering enhancement factor (ƒ(RH)) due to aerosol hygroscopic growth (2.2 observed average). Furthermore, an evaluation of the optical properties obtained using modeled aerosol properties revealed the inability of sectional and modal aerosol representations in WRF-Chem to properly reproduce the observed size distribution, with the models displaying a much wider accumulation mode. Other model deficiencies included an underestimate of organic aerosol density (1.0 g cm–3 in the model vs. observed average of 1.5 g cm–3) and an overprediction of the fractional contribution of submicron inorganic aerosols other than sulfate, ammonium, nitrate, chloride, and sodium corresponding to mostly dust (17 %–28 % modeled vs. 12 % estimated from observations). These results illustrate the complexity of achieving an accurate model representation of optical properties and provide potential solutions that are relevant to multiple disciplines and applications such as air quality forecasts, health impact assessments, climate projections, solar power forecasts, and aerosol data assimilation.« less
  10. Evaluating simplified chemical mechanisms within present-day simulations of the Community Earth System Model version 1.2 with CAM4 (CESM1.2 CAM-chem): MOZART-4 vs. Reduced Hydrocarbon vs. Super-Fast chemistry

    Abstract. While state-of-the-art complex chemical mechanisms expand our understanding of atmospheric chemistry, their sheer size and computational requirements often limit simulations to short lengths or ensembles to only a few members. Here we present and compare three 25-year present-day offline simulations with chemical mechanisms of different levels of complexity using the Community Earth System Model (CESM) Version 1.2 CAM-chem (CAM4): the Model for Ozone and Related Chemical Tracers, version 4 (MOZART-4) mechanism, the Reduced Hydrocarbon mechanism, and the Super-Fast mechanism. We show that, for most regions and time periods, differences in simulated ozone chemistry between these three mechanisms are smaller than themore » model–observation differences themselves. The MOZART-4 mechanism and the Reduced Hydrocarbon are in close agreement in their representation of ozone throughout the troposphere during all time periods (annual, seasonal, and diurnal). While the Super-Fast mechanism tends to have higher simulated ozone variability and differs from the MOZART-4 mechanism over regions of high biogenic emissions, it is surprisingly capable of simulating ozone adequately given its simplicity. We explore the trade-offs between chemical mechanism complexity and computational cost by identifying regions where the simpler mechanisms are comparable to the MOZART-4 mechanism and regions where they are not. The Super-Fast mechanism is 3 times as fast as the MOZART-4 mechanism, which allows for longer simulations or ensembles with more members that may not be feasible with the MOZART-4 mechanism given limited computational resources.« less
...

Search for:
All Records
Author / Contributor
0000000323256212

Refine by:
Resource Type
Availability
Publication Date
Author / Contributor
Research Organization