skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information
  1. The Effect of Physically Based Ice Radiative Processes on Greenland Ice Sheet Albedo and Surface Mass Balance in E3SM

    Abstract A significant portion of surface melt on the Greenland Ice Sheet (GrIS) is due to dark ice regions in the ablation zone, where solar absorption is influenced by the physical properties of the ice, light absorbing constituents (LACs), and the overlying crustal surface or melt ponds. Earth system models (ESMs) typically prescribe the albedo of ice surfaces as a constant value in the visible and near‐infrared spectral regions. This work advances ESM ice radiative transfer modeling by (a) incorporating a physically based radiative transfer model (SNow, ICe and Aerosol Radiation model Adding‐Doubling Version 4; SNICAR‐ADv4) into the Energy Exascalemore » Earth System Model (E3SM), (b) determining spatially and temporally varying bare ice physical properties over the GrIS ablation zone from satellite observations to inform SNICAR‐ADv4, and (c) assessing the impacts on simulated GrIS albedo and surface mass balance associated with modeling of more realistic bare ice albedo. GrIS‐wide bare ice albedo in E3SMv2 is overestimated by ∼4% in the visible and ∼7% in the near‐infrared wavelengths compared to the Moderate Resolution Imaging Spectroradiometer. Our bare ice physical property retrieval method found that LACs, ice crustal surfaces, and melt ponds reduce visible albedo by 30% in the bare ice region of the GrIS ablation zone. The realistic bare ice albedo reduces surface mass balance by ∼145 Gt, or 0.4 mm of sea‐level equivalent between 2000 and 2021 compared to the default E3SM. This work highlights the importance of simulating bare ice albedo accurately and realistically to improve our ability to quantify changes in the GrIS surface mass and radiative energy budgets.« less
  2. Use of Shallow Ice Core Measurements to Evaluate and Constrain 1980–1990 Global Reanalyses of Ice Sheet Precipitation Rates

    Abstract Sea‐level rise (SLR) projections by Earth System Models (ESMs) depend on ice sheet surface mass balances. Accurate, global atmosphere reanalyses would be ideal for providing equilibrated ice sheet model initial conditions in fully coupled ESM simulations. Here we present the first evaluation of 1980–1990 global reanalysis precipitation over Greenland and Antarctica that uses independent observations of net accumulation rates derived from shallow ice cores. Precipitation distributions from both the European Centre for Medium‐Range Weather Forecast's Reanalysis (ERA5) and the Modern‐Era Retrospective Analysis for Research and Applications (MERRA‐2) are highly correlated with contemporaneous co‐located net accumulation rates from Greenland (more » r 2  > 0.95) and West Antarctica ( r 2  > 0.7). Three other commonly used reanalyses (WFDE5, CRUNCEP, and GSWP3) exhibit significantly weaker correlations on one or both ice sheets. Our findings imply that ESMs should use ERA5 or MERRA‐2 in data‐forced simulations to validate ice sheet model dynamics and precondition firn for SLR projections.« less
  3. The fully coupled regionally refined model of E3SM version 2: overview of the atmosphere, land, and river results

    This paper provides an overview of the United States (US) Department of Energy's (DOE's) Energy Exascale Earth System Model version 2 (E3SMv2) fully coupled regionally refined model (RRM) and documents the overall atmosphere, land, and river results from the Coupled Model Intercomparison Project 6 (CMIP6) DECK (Diagnosis, Evaluation, and Characterization of Klima) and historical simulations – a first-of-its-kind set of climate production simulations using RRM. The North American (NA) RRM (NARRM) is developed as the high-resolution configuration of E3SMv2 with the primary goal of more explicitly addressing DOE's mission needs regarding impacts to the US energy sector facing Earth systemmore » changes. The NARRM features finer horizontal resolution grids centered over NA, consisting of 25→100 km atmosphere and land, a 0.125° river-routing model, and 14→60 km ocean and sea ice. By design, the computational cost of NARRM is ~3× of the uniform low-resolution (LR) model at 100 km but only ~10 %–20 % of a globally uniform high-resolution model at 25 km. A novel hybrid time step strategy for the atmosphere is key for NARRM to achieve improved climate simulation fidelity within the high-resolution patch without sacrificing the overall global performance. The global climate, including climatology, time series, sensitivity, and feedback, is confirmed to be largely identical between NARRM and LR as quantified with typical climate metrics. Over the refined NA area, NARRM is generally superior to LR, including for precipitation and clouds over the contiguous US (CONUS), summertime marine stratocumulus clouds off the coast of California, liquid and ice phase clouds near the North Pole region, extratropical cyclones, and spatial variability in land hydrological processes. The improvements over land are related to the better-resolved topography in NARRM, whereas those over ocean are attributable to the improved air–sea interactions with finer grids for both atmosphere and ocean and sea ice. Some features appear insensitive to the resolution change analyzed here, for instance the diurnal propagation of organized mesoscale convective systems over CONUS and the warm-season land–atmosphere coupling at the southern Great Plains. In summary, our study presents a realistically efficient approach to leverage the fully coupled RRM framework for a standard Earth system model release and high-resolution climate production simulations.« less
  4. The E3SM Diagnostics Package (E3SM Diags v2.7): a Python-based diagnostics package for Earth system model evaluation

    Abstract. The E3SM Diagnostics Package (E3SM Diags) is a modern, Python-based Earth system model (ESM) evaluation tool (with Python module name e3sm_diags), developed to support the Department of Energy (DOE) Energy Exascale Earth System Model (E3SM). E3SM Diags provides a wide suite of tools for evaluating native E3SM output, as well as ESM data on regular latitude–longitude grids, including output from Coupled Model Intercomparison Project (CMIP) class models. E3SM Diags is modeled after the National Center for Atmospheric Research (NCAR) Atmosphere Model Working Group (AMWG, 2022) diagnostics package. In its version 1 release, E3SM Diags included a set of core essential diagnosticsmore » to evaluate the mean physical climate from model simulations. As of version 2.7, more process-oriented and phenomenon-based evaluation diagnostics have been implemented, such as analysis of the quasi-biennial oscillation (QBO), the El Niño–Southern Oscillation (ENSO), streamflow, the diurnal cycle of precipitation, tropical cyclones, ozone and aerosol properties. An in situ dataset from DOE's Atmospheric Radiation Measurement (ARM) program has been integrated into the package for evaluating the representation of simulated cloud and precipitation processes. This tool is designed with enough flexibility to allow for the addition of new observational datasets and new diagnostic algorithms. Additional features include customizable figures; streamlined installation, configuration and execution; and multiprocessing for fast computation. The package uses an up-to-date observational data repository maintained by its developers, where recent datasets are added to the repository as they become available. Finally, several applications for the E3SM Diags module were introduced to fit a diverse set of use cases from the scientific community.« less
  5. SNICAR-ADv4: a physically based radiative transfer model to represent the spectral albedo of glacier ice

    Accurate modeling of cryospheric surface albedo is essential for our understanding of climate change as snow and ice surfaces regulate the global radiative budget and sea-level through their albedo and mass balance. Although significant progress has been made using physical principles to represent the dynamic albedo of snow, models of glacier ice albedo tend to be heavily parameterized and not explicitly connected with physical properties that govern albedo, such as the number and size of air bubbles, specific surface area (SSA), presence of abiotic and biotic light absorbing constituents (LACs), and characteristics of any overlying snow. Here, we introduce SNICAR-ADv4, an extension of the multi-layer two-streammore » delta-Eddington radiative transfer model with the adding–doubling solver that has been previously applied to represent snow and sea-ice spectral albedo. SNICAR-ADv4 treats spectrally resolved Fresnel reflectance and transmittance between overlying snow and higher-density glacier ice, scattering by air bubbles of varying sizes, and numerous types of LACs. SNICAR-ADv4 simulates a wide range of clean snow and ice broadband albedo (BBA), ranging from 0.88 for (30 µm) fine-grain snow to 0.03 for bare and bubble-free ice under direct light. Our results indicate that representing ice with a density of 650 kg m-3 as snow with no refractive Fresnel layer, as done previously, generally overestimates the BBA by an average of 0.058. However, because most naturally occurring ice surfaces are roughened “white ice”, we recommend modeling a thin snow layer over bare ice simulations. We find optimal agreement with measurements by representing cryospheric media with densities less than 650 kg m-3 as snow and larger-density media as bubbly ice with a Fresnel layer. SNICAR-ADv4 also simulates the non-linear albedo impacts from LACs with changing ice SSA, with peak impact per unit mass of LACs near SSAs of 0.1–0.01 m2 kg-1. For bare, bubble-free ice, LACs actually increase the albedo. SNICAR-ADv4 represents smooth transitions between snow, firn, and ice surfaces and accurately reproduces measured spectral albedos of a variety of glacier surfaces. This work paves the way for adapting SNICAR-ADv4 to be used in land ice model components of Earth system models.« less
  6. The role of föhn winds in eastern Antarctic Peninsula rapid ice shelf collapse

    Ice shelf collapse reduces buttressing and enables grounded glaciers to contribute more rapidly to sea-level rise in a warming climate. The abrupt collapses of the Larsen A (1995) and B (2002) ice shelves on the Antarctic Peninsula (AP) occurred, at least for Larsen B, when long-period ocean swells damaged the calving front and the ice shelf was inundated with melt lakes that led to large-scale hydrofracture cascades. During collapse, field and satellite observations indicate föhn winds were present on both ice shelves. Here we use a regional climate model and machine learning analyses to evaluate the contributory roles of föhnmore » winds and associated melt events prior to and during the collapses for ice shelves on the AP. Föhn winds caused about 25 % ± 3 % of the total annual melt in just 9 d on Larsen A prior to and during collapse and were present during the Larsen B collapse, which helped form extensive melt lakes. At the same time, the off-coast wind direction created by föhn winds helped melt and physically push sea ice away from the ice shelf calving fronts that allowed long-period ocean swells to reach and damage the front, which has been theorized to have ultimately triggered collapse. Collapsed ice shelves experienced enhanced surface melt driven by föhn winds over a large spatial extent and near the calving front, whereas SCAR inlet and the Larsen C ice shelves are affected less by föhn-wind-induced melt and do not experience large-scale melt ponds. These results suggest SCAR inlet and the Larsen C ice shelves may be less likely to experience rapid collapse due to föhn-driven melt so long as surface temperatures and föhn occurrence remain within historical bounds.« less
  7. More Realistic Intermediate Depth Dry Firn Densification in the Energy Exascale Earth System Model (E3SM)

    Abstract Earth system models account for seasonal snow cover, but many do not accommodate the deeper snowpack on ice sheets (aka firn) that slowly transforms to ice under accumulating snowfall. To accommodate and resolve firn depths of up to 60 m in the Energy Exascale Earth System Model's land surface model (ELM), we add 11 layers to its snowpack and evaluate three dry snow compaction equations in multi‐century simulations. After comparing results from ELM simulations (forced with atmospheric reanalysis) with empirical data, we find that implementing into ELM a two‐stage firn densification model produces more accurate dry firn densities at intermediatemore » depths of 20–60 m. Compared to modeling firn using the equations in the (12 layer) Community Land Model (version 5), switching to the two‐stage firn densification model (with 16 layers) significantly decreases root‐mean‐square errors in upper 60 m dry firn densities by an average of 41 kg m −3 (31%). Simulations with three different firn density parameterizations show that the two‐stage firn densification model should be used for applications that prioritize accurate upper 60 m firn air content (FAC) in regions where the mean annual surface temperature is greater than roughly −31°C. Because snow metamorphism, firn density, and FAC are major components in modeling ice sheet surface albedo, melt water retention, and climatic mass balance, these developments advance broader efforts to simulate the response of land ice to atmospheric forcing in Earth system models.« less
  8. The DOE E3SM Model Version 2: Overview of the Physical Model and Initial Model Evaluation

    This work documents version two of the Department of Energy's Energy Exascale Earth System Model (E3SM). E3SMv2 is a significant evolution from its predecessor E3SMv1, resulting in a model that is nearly twice as fast and with a simulated climate that is improved in many metrics. We describe the physical climate model in its lower horizontal resolution configuration consisting of 110 km atmosphere, 165 km land, 0.5° river routing model, and an ocean and sea ice with mesh spacing varying between 60 km in the mid-latitudes and 30 km at the equator and poles. The model performance is evaluated withmore » Coupled Model Intercomparison Project Phase 6 Diagnosis, Evaluation, and Characterization of Klima simulations augmented with historical simulations as well as simulations to evaluate impacts of different forcing agents. The simulated climate has many realistic features of the climate system, with notable improvements in clouds and precipitation compared to E3SMv1. E3SMv1 suffered from an excessively high equilibrium climate sensitivity (ECS) of 5.3 K. In E3SMv2, ECS is reduced to 4.0 K which is now within the plausible range based on a recent World Climate Research Program assessment. However, a number of important biases remain including a weak Atlantic Meridional Overturning Circulation, deficiencies in the characteristics and spectral distribution of tropical atmospheric variability, and a significant underestimation of the observed warming in the second half of the historical period. An analysis of single-forcing simulations indicates that correcting the historical temperature bias would require a substantial reduction in the magnitude of the aerosol-related forcing.« less
  9. Data-Driven Artificial Intelligence for Calibration of Hyperspectral Big Data

    Near-earth hyperspectral big data present both huge opportunities and challenges for spurring developments in agriculture and high-throughput plant phenotyping and breeding. In this article, we present data-driven approaches to address the calibration challenges for utilizing near-earth hyperspectral data for agriculture. A data-driven, fully automated calibration workflow that includes a suite of robust algorithms for radiometric calibration, bidirectional reflectance distribution function (BRDF) correction and reflectance normalization, soil and shadow masking, and image quality assessments was developed. An empirical method that utilizes predetermined models between camera photon counts (digital numbers) and downwelling irradiance measurements for each spectral band was established to performmore » radiometric calibration. A kernel-driven semiempirical BRDF correction method based on the Ross Thick-Li Sparse (RTLS) model was used to normalize the data for both changes in solar elevation and sensor view angle differences attributed to pixel location within the field of view. Following rigorous radiometric and BRDF corrections, novel rule-based methods were developed to conduct automatic soil removal; and a newly proposed approach was used for image quality assessment; additionally, shadow masking and plot-level feature extraction were carried out. Our results show that the automated calibration, processing, storage, and analysis pipeline developed in this work can effectively handle massive amounts of hyperspectral data and address the urgent challenges related to the production of sustainable bioenergy and food crops, targeting methods to accelerate plant breeding for improving yield and biomass traits.« less
  10. Greenland Surface Melt Dominated by Solar and Sensible Heating

    Abstract The Greenland Ice Sheet is the primary source of global Barystatic sea‐level rise, and at least half of its recent mass‐loss acceleration is caused by surface meltwater runoff. Previous studies on surface melt have examined various thermodynamic and dynamic drivers, yet their contributions are not compared using unified observations. We use decade‐long in‐situ measurements from automatic weather stations throughout the ablation zone to assess energy components and identify the leading physical processes in this area. Large melt events exceeding 3 σ contribute only ∼2% to total surface melt since 2007. The day‐to‐day variability of all melt is dominated bymore » sensible heat exchange (31 ± 7%) and shortwave radiation (28 ± 5%). Sensible and solar heating correlate with the occurrence of dry and fast gravity‐driven winds. These katabatic winds increase sensible heating of the surface mainly by enhancing vertical mixing that reduces the temperature inversion. The concomitant low humidity and clear skies yield increased solar heating.« less
...

Search for:
All Records
Author / Contributor
0000000301298024

Refine by:
Resource Type
Availability
Publication Date
Author / Contributor
Research Organization