skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information
  1. Majorana bound states in a d -wave superconductor planar Josephson junction

    We study phase-controlled planar Josephson junctions comprising a two-dimensional electron gas with strong spin-orbit coupling and d-wave superconductors, which have an advantage of a high critical temperature. We show that a region between the two superconductors can be tuned into a topological state by the in-plane Zeeman field, and can host Majorana bound states. The phase diagram as a function of the Zeeman field, chemical potential, and the phase difference between superconductors exhibits the appearance of Majorana bound states for a wide range of parameters. We further investigate the behavior of the topological gap and its dependence on the typemore » of d-wave pairing, i.e., d, d+is, or d+id', and note the difficulties that can arise due to the presence of gapless excitations in pure d-wave superconductors. On the other hand, the planar Josephson junctions based on superconductors with d+is and d+id' pairings can potentially lead to realizations of Majorana bound states. Furthermore, our proposal can be realized in cuprate superconductors, e.g., in a twisted bilayer, combined with the layered semiconductor Bi2O2Se.« less
  2. Breakdown of the drift-diffusion model for transverse spin transport in a disordered Pt film

    Spin-accumulation and spin-current profiles are calculated for a disordered Pt film subjected to an in-plane electric current within the nonequilibrium Green's function approach. In the bulklike region of the sample, this approach captures the intrinsic spin Hall effect found in other calculations. Near the surfaces, the results reveal qualitative differences with the results of the widely used spin-diffusion model, even when the boundary conditions are modified to try to account for them. One difference is that the effective spin-diffusion length for transverse spin transport is significantly different from its longitudinal counterpart and is instead similar to the mean-free path. Furthermore,more » this feature may be generic for spin currents generated via the intrinsic spin Hall mechanism because of the differences in transport mechanisms compared to longitudinal spin transport. Orbital accumulation in the Pt film is only significant in the immediate vicinity of the surfaces and has a small component penetrating into the bulk only in the presence of spin-orbit coupling, as a secondary effect induced by the spin accumulation.« less
  3. Spin Hall effect of vorticity

    Using mapping between topological defects in an easy-plane magnet and electrical charges, we study interplay between vorticity and spin currents. Here, we demonstrate that the flow of vorticity is accompanied by the transverse spin current generation; an effect which can be termed as the spin Hall effect of vorticity. We study this effect across the BKT transition and establish the role of dissipation and spin nonconservation in the crossover from spin superfluidity to diffusive spin transport. Our results pave the way for low power computing devices relying on vorticity and spin flows that can propagate over long distances.
  4. Superfluid spin transistor

    We propose to use the Hall response of topological defects, such as merons and antimerons, to spin currents in two-dimensional magnetic insulator with in-plane anisotropy for identification of the Berezinskii-Kosterlitz-Thouless (BKT) transition in a transistorlike geometry. Our numerical results relying on a combination of Monte Carlo and spin dynamics simulations show transition from spin superfluidity to conventional spin transport, accompanied by the universal jump of the spin stiffness and exponential growth of the transverse vorticity current. We propose a superfluid spin transistor in which the spin and vorticity currents are modulated by changes in density of free topological defects, e.g.,more » by injection of vorticity or by tuning the in-plane magnet across the BKT transition by changing the exchange interaction, magnetic anisotropy, or temperature.« less
  5. Majorana bound states with chiral magnetic textures

    The aim of this Tutorial is to give a pedagogical introduction into realizations of Majorana fermions, usually termed as Majorana bound states (MBSs), in condensed matter systems with magnetic textures. We begin by considering the Kitaev chain model of “spinless” fermions and show how two “half” fermions can appear at chain ends due to interactions. By considering this model and its two-dimensional generalization, we emphasize intricate relation between topological superconductivity and possible realizations of MBS. We further discuss how “spinless” fermions can be realized in more physical systems, e.g., by employing the spin-momentum locking. Next, we demonstrate how magnetic texturesmore » can be used to induce synthetic or fictitious spin–orbit interactions, and, thus, stabilize MBS. We describe a general approach that works for arbitrary textures and apply it to skyrmions. We show how MBS can be stabilized by elongated skyrmions, certain higher order skyrmions, and chains of skyrmions. We also discuss how braiding operations can be performed with MBS stabilized on magnetic skyrmions. Furthermore, this Tutorial is aimed at students at the graduate level.« less
  6. Magnon Landau Levels and Spin Responses in Antiferromagnets

    We study gauge fields produced by gradients of the Dzyaloshinskii-Moriya interaction and propose a model of an AFM topological insulator of magnons. In the long wavelength limit, the Landau levels induced by the inhomogeneous Dzyaloshinskii-Moriya interaction exhibit relativistic physics described by the Klein-Gordon equation. The spin Nernst response due to the formation of magnonic Landau levels is compared to similar topological responses in skyrmion and vortex-antivortex crystal phases of AFM insulators. Here, our studies show that AFM insulators exhibit rich physics associated with topological magnon excitations.
  7. Magnetic skyrmion bubble motion driven by surface acoustic waves

    Here, we study the dynamical control of a magnetic skyrmion bubble by using counter-propagating surface acoustic waves (SAWs) in a ferromagnet. First, we determine the bubble mass and derive the force due to SAWs acting on a magnetic bubble using Thiele’s method. The force that pushes the bubble is proportional to the strain gradient for the major strain component. We then study the dynamical pinning and motion of magnetic bubbles by SAWs in a nanowire. In a disk geometry, we propose a SAWs-driven skyrmion bubble oscillator with two resonant frequencies.
  8. Magnetoelectric domain wall dynamics and its implications for magnetoelectric memory

    Domain wall dynamics in a magnetoelectric antiferromagnet is analyzed, and its implications for magnetoelectric memory applications are discussed. Cr2O3 is used in the estimates of the materials parameters. It is found that the domain wall mobility has a maximum as a function of the electric field due to the gyrotropic coupling induced by it. In Cr2O3, the maximal mobility of 0.1 m/(s Oe) is reached at E≈0.06 V/nm. Fields of this order may be too weak to overcome the intrinsic depinning field, which is estimated for B-doped Cr2O3. These major drawbacks for device implementation can be overcome by applying amore » small in-plane shear strain, which blocks the domain wall precession. Domain wall mobility of about 0.7 m/(s Oe) can then be achieved at E = 0.2 V/nm. Furthermore, a split-gate scheme is proposed for the domain-wall controlled bit element; its extension to multiple-gate linear arrays can offer advantages in memory density, programmability, and logic functionality.« less

Search for:
All Records
Author / Contributor
0000000258847154

Refine by:
Resource Type
Availability
Publication Date
Author / Contributor
Research Organization