skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information
  1. Halo removal experiments with hollow electron lens in the BNL Relativistic Heavy Ion Collider

    A hollow electron beam has been proposed as an active control tool to remove the beam halo from high-energy, high-current hadron or ion machines (such as the High-Luminosity Large Hadron Collider). To study the halo removal rate and assess the effect on the ion beam core, one of the two electron lenses in the Relativistic Heavy Ion Collider was changed from a Gaussian beam profile to a hollow profile. We describe the design and verification of the hollow electron beam parameters as well as the methods to minimize the hollow beam profile distortions, which can result in an ion beammore » emittance increase. The hollow beam alignment with the ion beam by using a backscattered electron detector has been demonstrated. Furthermore, experiments were carried out to explore the efficiency of the halo removal by scanning the current and inner radius of the hollow electron beam, which is pulsed either every turn or every nth turn. The effects of the hollow electron beam on the ion beam emittance and luminosity were also assessed experimentally by scanning the inner radius of the electron beam.« less
  2. Analysis of magnetically immersed electron guns with non-adiabatic fields

    Electron diode guns, which have strongly varying magnetic or electric fields in a cathode-anode gap, were investigated in order to generate laminar electron beams with high current density using magnetically immersed guns. By creating a strongly varying radial electric field in a cathode-anode gap of the electron gun, it was demonstrated that the optical properties of the gun can be significantly altered, which allows the generation of a laminar, high-current electron beam with relatively low magnetic field on the cathode. The relatively high magnetic compression of the electron beam achieved by this method is important for producing electron beams withmore » high current density. A similar result can be obtained by inducing a strong variation of the magnetic field in a cathode-anode gap. It was observed that creating a dip in the axial magnetic field in the cathode-anode gap of an adiabatic electron gun has an optical effect similar to guns with strong variation of radial electric field. By analyzing the electron trajectories angles and presenting the results in a gun performance map different geometries of magnetically immersed electron guns with non-adiabatic fields are compared with each other and with a more traditional adiabatic electron gun. Some advantages and limitations of guns with non-adiabatic fields are outlined. In conclusion, the tests results of non-adiabatic electron gun with modified magnetic field are presented.« less
  3. Fast and efficient charge breeding of the Californium rare isotope breeder upgrade electron beam ion source

    The Electron Beam Ion Source (EBIS), developed to breed CARIBU radioactive beams at ATLAS, is being tested off-line. A unique property of the EBIS is a combination of short breeding times, high repetition rates and a large acceptance. Overall, we have implemented many innovative features during the design and construction of the CARIBU EBIS as compared to the existing EBIS breeders. The offline charge breeding tests are being performed using a surface ionization source that produces singly-charged cesium ions. The main goal of the off-line commissioning is to demonstrate stable operation of the EBIS at a 10 Hz repetition ratemore » and a breeding efficiency into single charge state higher than 15%. These goals have been successfully achieved and exceeded. We have measured (20±0.7)% breeding efficiency into the single charge state of 28+ cesium ions with the breeding time of 28 ms. In general, the current CARIBU EBIS operational parameters can provide charge breeding of any ions in the full mass range of periodic table with high efficiency, short breeding times and sufficiently low charge-to-mass ratio, 1/6.3 for the heaviest masses, for further acceleration in ATLAS. In this paper we discuss the parameters of the EBIS and the charge breeding results in a pulsed injection mode with repetition rates up to 10 Hz.« less
  4. Fast and efficient charge breeding of the Californium rare isotope breeder upgrade electron beam ion source

    The Electron Beam Ion Source (EBIS), developed to breed Californium Rare Isotope Breeder Upgrade (CARIBU) radioactive beams at Argonne Tandem Linac Accelerator System (ATLAS), is being tested off-line. A unique property of the EBIS is a combination of short breeding times, high repetition rates, and a large acceptance. Overall, we have implemented many innovative features during the design and construction of the CARIBU EBIS as compared to the existing EBIS breeders. The off-line charge breeding tests are being performed using a surface ionization source that produces singly charged cesium ions. The main goal of the off-line commissioning is to demonstratemore » stable operation of the EBIS at a 10 Hz repetition rate and a breeding efficiency into single charge state higher than 15%. These goals have been successfully achieved and exceeded. We have measured (20% ± 0.7%) breeding efficiency into the single charge state of 28+ cesium ions with the breeding time of 28 ms. In general, the current CARIBU EBIS operational parameters can provide charge breeding of any ions in the full mass range of periodic table with high efficiency, short breeding times, and sufficiently low charge-to-mass ratio, 1/6.3 for the heaviest masses, for further acceleration in ATLAS. In this study, we discuss the parameters of the EBIS and the charge breeding results in a pulsed injection mode with repetition rates up to 10 Hz.« less
  5. Generation of magneto-immersed electron beams


Search for:
All Records
Author / Contributor
0000000193447378

Refine by:
Resource Type
Availability
Publication Date
Author / Contributor
Research Organization