skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Establishment of uncertainty ranges and probability distributions of actinide solubilities for performance assessment in the Waste Isolation Pilot Plant (WIPP).

Conference ·
OSTI ID:991829

The Fracture-Matrix Transport (FMT) code developed at Sandia National Laboratories solves chemical equilibrium problems using the Pitzer activity coefficient model with a database containing actinide species. The code is capable of predicting actinide solubilities at 25 C in various ionic-strength solutions from dilute groundwaters to high-ionic-strength brines. The code uses oxidation state analogies, i.e., Am(III) is used to predict solubilities of actinides in the +III oxidation state; Th(IV) is used to predict solubilities of actinides in the +IV state; Np(V) is utilized to predict solubilities of actinides in the +V state. This code has been qualified for predicting actinide solubilities for the Waste Isolation Pilot Plant (WIPP) Compliance Certification Application in 1996, and Compliance Re-Certification Applications in 2004 and 2009. We have established revised actinide-solubility uncertainty ranges and probability distributions for Performance Assessment (PA) by comparing actinide solubilities predicted by the FMT code with solubility data in various solutions from the open literature. The literature data used in this study include solubilities in simple solutions (NaCl, NaHCO{sub 3}, Na{sub 2}CO{sub 3}, NaClO{sub 4}, KCl, K{sub 2}CO{sub 3}, etc.), binary mixing solutions (NaCl+NaHCO{sub 3}, NaCl+Na{sub 2}CO{sub 3}, KCl+K{sub 2}CO{sub 3}, etc.), ternary mixing solutions (NaCl+Na{sub 2}CO{sub 3}+KCl, NaHCO{sub 3}+Na{sub 2}CO{sub 3}+NaClO{sub 4}, etc.), and multi-component synthetic brines relevant to the WIPP.

Research Organization:
Sandia National Laboratories (SNL), Albuquerque, NM, and Livermore, CA (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC04-94AL85000
OSTI ID:
991829
Report Number(s):
SAND2010-2013C; TRN: US1007574
Resource Relation:
Conference: Proposed for presentation at the Materials Research Society Spring Meeting held April 5-9, 2010 in San Francisco, CA.
Country of Publication:
United States
Language:
English