skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Adsorption mechanism in reversed-phase liquid chromatography. Effect of the surface coverage of a monomeric C18-silica stationary phase

Journal Article · · Journal of Chromatography A
 [1];  [2]
  1. University of Tennessee, Knoxville (UTK)
  2. ORNL

The effect of the bonding density of the octadecyl chains onto the same silica on the adsorption and retention properties of low molecular weight compounds (phenol, caffeine, and sodium 2-naphthalene sulfonate) was investigated. The same mobile phase (methanol:water, 20:80, v/v) and temperature (T = 298 K) were applied and two duplicate columns (A and B) from each batch of packing material (neat silica, simply endcapped or C{sub 1} phase, 0.42, 1.01, 2.03, and 3.15 {micro}mol/m{sup 2} of C{sub 18} alkyl chains) were tested. Adsorption data of the three compounds were acquired by frontal analysis (FA) and the adsorption energy distributions (AEDs) were calculated using the expectation-maximization method. Results confirmed earlier findings in linear chromatography of a retention maximum at an intermediate bonding density. From a general point of view, the saturation capacity of the adsorbent tends to decrease with increasing bonding density, due to the vanishing space intercalated between the C{sub 18} bonded chains and to the decrease of the specific surface area of the stationary phase. The equilibrium constants are maximum for an intermediary bonding density ({approx}2 {micro}mol/m{sup 2}). An enthalpy-entropy compensation was found for the thermodynamic parameters of the isotherm data. Weak equilibrium constants (small {Delta}H) and high saturation capacities (large {Delta}S) were observed at low bonding densities, higher equilibrium constants and lower saturation capacities at high bonding densities, the combinations leading to similar apparent retention in RPLC. The use of a low surface coverage column is recommended for preparative purposes.

Research Organization:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Organization:
USDOE Office of Science (SC)
DOE Contract Number:
DE-AC05-00OR22725
OSTI ID:
989612
Journal Information:
Journal of Chromatography A, Vol. 1115, Issue 2006; ISSN 0021-9673
Country of Publication:
United States
Language:
English