skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Hygrothermal degradation of 3-glycidoxypropyltrimethoxysilane films studied by neutron and X-ray reflectivity and attenuated total reflection infrared spectroscopy.

Journal Article · · Proposed for publication in Langmuir.
OSTI ID:971814

Thin films of organosilanes have great technological importance in the areas of adhesion promotion, durability, and corrosion resistance. However, it is well-known that water can degrade organosilane films, particularly at elevated temperatures. In this work, X-ray and neutron reflectivity (XR and NR) were combined with attenuated total reflection infrared (ATR-IR) spectroscopy to study the chemical and structural changes within thin films of (3-glycidoxypropyl)trimethoxysilane (GPS) after exposure for various periods of time to air saturated with either D{sub 2}O or H{sub 2}O at 80 C. For NR and XR, ultrathin ({approx}100 {angstrom}) films were prepared by spin-coating. Both D{sub 2}O and H{sub 2}O provide neutron scattering contrast with GPS. Variations in the neutron scattering length density (SLD) profiles (a function of mass density and atomic composition) with conditioning time were measured after drying the samples out and also swelled with H{sub 2}O or D{sub 2}O vapor at room temperature. For samples that were dried out prior to measurement, little or no change was observed for H{sub 2}O conditioning up to 3.5 days, but large changes were observed after 30 days of conditioning. The range of conditioning time for this structural change was narrowed to between 4 and 10 days with XR. The SLD profiles indicated that the top portion of the GPS film was transformed into a thick low-density layer after conditioning, but the bottom portion showed little structural change. A previous NR study of as-prepared GPS films involving swelling with deuterated nitrobenzene showed that the central portion of the film has much lower cross-link density than the region nearest the substrate. The present data show that the central portion also swells to a much greater extent with water and hydrolyzes more rapidly. The chemical degradation mechanism was identified by IR as hydrolysis of siloxane bonds. For ATR-IR, GPS films were prepared by dip-coating, which resulted in a greater and more variable thickness than for the spin-coated samples. The IR spectra revealed an increase in vicinal silanol generation over the first 3 days of conditioning followed by geminal silanol generation. Thus, the structural change detected by NR and XR roughly coincided with the onset of geminal silanol generation. Finally, little change in the reflectivity data was observed for films conditioned with D{sub 2}O at 80 C for 1 month. This indicates that hydrolysis of Si-O-Si is much slower with D{sub 2}O than with H{sub 2}O.

Research Organization:
Sandia National Laboratories (SNL), Albuquerque, NM, and Livermore, CA (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC04-94AL85000
OSTI ID:
971814
Report Number(s):
SAND2005-3111J; TRN: US1001263
Journal Information:
Proposed for publication in Langmuir., Journal Name: Proposed for publication in Langmuir.
Country of Publication:
United States
Language:
English