skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Dissolution Kinetics of Meta-Torbernite under Circum-neutral to Alkaline Conditions

Journal Article · · Environmental Chemistry, 6(6):551-560
DOI:https://doi.org/10.1071/EN09046· OSTI ID:970365

Autunite group minerals have been identified in contaminated sediments as the long-term controlling phase of uranium. Meta-torbernite, has been identified in subsurface environments which were subjected to co-contaminant disposal practices from past nuclear weapons and fuel operations. Under these conditions the mobility of uranium in subsurface pore waters is limited by the rate of meta-torbernite dissolution; however, there are no known investigations which report the dissolution behavior of meta-torbernite. The purpose of this investigation was to conduct a series of single-pass flow-through (SPFT) tests to 1) quantify the effect of temperature (23 - 90oC) and pH (6 -10) on meta-torbernite dissolution, 2) compare the dissolution of meta-torbernite to other autunite-group minerals, and 3) evaluate the effect of aqueous phosphate on the dissolution kinetics of meta-torbernite. Results presented here illustrate meta-torbernite dissolution rates increase by ~100X over the pH interval of 6 to 10 (eta = 0.59 ± 0.07), irrespective of temperature. The power law coefficient for meta-torbernite, eta = 0.59 ± 0.07, is greater than that quantified for Ca-meta-autunite, eta = 0.42 ± 0.12. This suggests the stability of meta-torbernite is greater than that of meta-autunite, which is reflected in the predicted stability constants. The rate equation for the dissolution of meta-torbernite as a function of aqueous phosphate concentration is log rdissol (mol m-2 sec-1) = -4.7 x 10-13 + 4.1 x 10-10 [PO43-].

Research Organization:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC05-76RL01830
OSTI ID:
970365
Report Number(s):
PNNL-SA-65825; 830403000; TRN: US201003%%528
Journal Information:
Environmental Chemistry, 6(6):551-560, Vol. 6, Issue 6; ISSN 1448-2517
Country of Publication:
United States
Language:
English