skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Alternate Methods For Eluting Cesium From Spherical Resorcinol-Formaldehyde Resin

Conference ·
OSTI ID:966737

A Small Column Ion Exchange (SCIX) system has been proposed for removing cesium from the supernate and dissolved salt solutions in the high level waste tanks at the Savannah River Site (SRS). The SCIX system could use either crystalline silicotitanate (CST) an inorganic, non-regenerable sorbent or spherical resorcinol-formaldehyde (RF), a new regenerable resin, to remove cesium from the waste solutions. The standard method for eluting the cesium from the RF resin uses 15-20 bed volumes (BV) of 0.5 M nitric acid (HNO3). The nitric acid eluate, containing the radioactive cesium, would be combined with the sludge from the waste tanks, and would be converted into glass at the Defense Waste Processing Facility (DWPF) at SRS. The amount of nitric acid generated by the standard elution method exceeds the capacity of DWPF to destroy the nitrate ions and maintain the required chemical reducing conditions in the glass melt. Alternate methods for eluting the resin have been tested, including using lower concentrations of nitric acid, other acids, and changing the flow regimes. About 4 bed volumes of 0.5 M nitric acid are required to remove the sodium (titrate the resin) and most of the cesium from the resin, so the bulk of the acid used for the standard elution method removes a very small quantity of cesium from the resin. The resin was loaded with 9.5 g Cs/L of resin prior to elution, which is the maximum expected loading for RF resin treating the actual dissolved salt waste at SRS. For the baseline elution method, 465 g of nitrate is used per liter of resin, and >99.9999% of the cesium is removed from the resin. An alternative method that used 4 bed volumes of 0.5 M HNO3 followed by 11 bed volumes of 0.05 M HNO3, used 158 g of nitrate per liter of resin (66% less nitrate than used for the standard elution) and removed >99.998% of the cesium. A staccato flow mode using 0.5 M HNO3 (1 hr on at 1 BV/hr, followed by 3 hrs off) after the resin had been titrated using a continuous flow of acid at 1 BV/hr removed 99.9998% of the cesium while using 12 BV of acid (20% less than the baseline). Formic acid was slightly less efficient than nitric acid for eluting the resin, but 20 BV of 0.5 M HCOOH removed 99.98% of the cesium from the resin.

Research Organization:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Organization:
EM USDOE - Environmental Restoration and Waste Management (EM)
DOE Contract Number:
DE-AC05-00OR22725
OSTI ID:
966737
Resource Relation:
Conference: Waste Management 2009, Phoenix, AZ, USA, 20090301, 20090305
Country of Publication:
United States
Language:
English

Related Subjects