skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Two-Phase Cooling Method Using R134a Refrigerant to Cool Power Electronic Devices

Journal Article · · IEEE Transactions on Industry Applications
OSTI ID:931713

This paper presents a two-phase cooling method using R134a refrigerant to dissipate the heat energy (loss) generated by power electronics (PE) such as those associated with rectifiers, converters, and inverters for a specific application in hybrid-electric vehicles (HEVs). The cooling method involves submerging PE devices in an R134a bath, which limits the junction temperature of PE devices while conserving weight and volume of the heat sink without sacrificing equipment reliability. First, experimental tests that included an extended soak for more than 300 days were performed on a submerged IGBT and gate-controller card to study dielectric characteristics, deterioration effects, and heat flux capability of R134a. Results from these tests illustrate that R134a has high dielectric characteristics, no deterioration on electrical components, and a heat flux of 114 W/cm 2 for the experimental configuration. Second, experimental tests that included simultaneous operation with a mock automotive air-conditioner (A/C) system were performed on the same IGBT and gate controller card. Data extrapolation from these tests determined that a typical automotive A/C system has more than sufficient cooling capacity to cool a typical 30 kW traction inverter. Last, a discussion and simulation of active cooling of the IGBT junction layer with R134a refrigerant is given. This technique will drastically increase the forward current ratings and reliability of the PE device

Research Organization:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Power Electronics and Electric Machinery Research Facility
Sponsoring Organization:
USDOE Office of Energy Efficiency and Renewable Energy (EERE)
DOE Contract Number:
DE-AC05-00OR22725
OSTI ID:
931713
Journal Information:
IEEE Transactions on Industry Applications, Vol. 43, Issue 3; ISSN 0093-9994
Country of Publication:
United States
Language:
English