skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Energy Conservation/Waste Reduction in the Processing of Soft (Unfired) Ceramic Particles Via Dynamic Cyclone Classification

Technical Report ·
OSTI ID:809875

The objective of this project was to advance the development of a novel inertial classifier technology to a full-scale industrial product by sequentially evaluating performance of pre-commercial prototypes. The technology, termed a ''Dynamic Cyclone Classifier'' (DCC), utilizes boundary layers on rotating annular disks to effect particle separation with minimal particle-rotor impaction. Although a large (2-ton/hr) DCC was originally envisioned for use within the mining industry, a smaller (kg/hr) sub-10-mm ''Fine Particle Dynamic Cyclone Classifier'' (FPDCC) was subsequently developed as a result of market research that showed higher commercialization potential for classifying ultrafine powders. Modified FPDCC prototypes were iteratively tested and evaluated in the sub-10-mm particle size range using standardized test particles (i.e., ISO Fine test dust). Classification performance tests were assessed by varying device parameters to define the operational envelope of the device to obtain sharp classification cuts, to maximize particle dispersion, to limit particle attrition and to increase production yields. The FPDCC exhibited sub-10-mm performance using both ideal (ISO test dust) and pharmaceutical excipient (calcium carbonate) ultrafine powders. Performance was compared with conventional classification technologies having the ability to process sub-10-mm ultrafine powders, specifically high-efficiency cyclones (HECs) and rotary vane classifiers (RVCs). The FPDCC can generate sharper classification cuts than high-pressure/high efficiency cyclones (HECs), since there is no turbulent particle re-entrainment, while using as much as 95% less energy. Being vaneless, particle impact with high RPM rotor components in the FPDCC is much less severe than in rotary vane classifiers (RVCs), leading to less critical component wear/erosion and concomitantly reducing potential product attrition and contamination. FPDCC energy usage is also less than in RVCs, since rotating vanes require more power to overcome their stronger countercurrent flow. Several large commercial classifier manufacturers have expressed interest in licensing the FPDCC technology for commercialization contingent upon performance validation/verification in the laboratory and at selected Beta test sites. The revised target markets for the FPDCC are pharmaceuticals/neutriceuticals, food products/additives, cosmetics and specialty chemicals. Commercial FPDCC devices will improve product yield, reduce production costs, decrease energy consumption, and minimize process/product waste streams.

Research Organization:
InnovaTech, Inc.; Research Triangle Park, NC (US)
Sponsoring Organization:
USDOE Office of Industrial Technologies (OIT) (EE-20); USDOE Office of Industrial Technologies (OIT) (EE-20) (US)
DOE Contract Number:
FG36-01GO11046
OSTI ID:
809875
Resource Relation:
Other Information: PBD: 15 Apr 2003
Country of Publication:
United States
Language:
English