skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Applications of the heteronuclear Overhauser effect

Thesis/Dissertation ·
OSTI ID:7002792

The nuclear Overhauser effect (NOE) is a change in the intensity of the nuclear magnetic resonance (NMR) signal of a nucleus, brought about by the saturation of the resonance of a neighboring nucleus. This phenomenon is dependent on the environment, motional dynamics, and the distance separating the two nuclei. Therefore, if enough is known about the environment and dynamics of the two nuclei, the distance between the two can be determined through measurement of the NOE. The proton homonuclear Overhauser effect experiment has become a standard means of determining relative proton-proton distances. The heteronuclear Overhauser effect, on the other hand, has been primarily used as a means of improving the signal to noise of the NMR spectra of nuclei which have gyromagnetic ratios which are the same sign as that of a proton, which is most often the saturated nucleus. The effect is also commonly used to distinguish between carbons which are bonded to hydrogen and quaternary carbons. A second application is the determination of the solution conformation of a metal cation-ionophore complex, Li-Lasalocid A, based on the results of the 2-D heteronuclear Overhauser effect experiment. Finally, the amino acid sequence of a small peptide. Gramicidin S, is determined by again making use of the 2-D heteronuclear Overhauser experiment.

Research Organization:
Case Western Reserve Univ., Cleveland, OH (USA)
OSTI ID:
7002792
Resource Relation:
Other Information: Thesis (Ph. D.)
Country of Publication:
United States
Language:
English