skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: In situ oil shale retorting: water quality

Technical Report ·
OSTI ID:6553436

Rio Blanco Oil Shale Company completed the first burn on their modified in-situ system located in the Piceance Basin of Colorado. Gas stream analyses were performed using a small computerized mass spectrometer. These analyses were made continuously from a sample line originating at the off-gas knockout drum. In addition, the feasibility of determining trace sulfur gases in this mixture was tested. The mass spectrometer has a detection limit of about 5 ppM for a typical trace component in air or other simple gas matrix. However, because of the complex organic matrix composing the oil shale gas, it becomes very difficult to positively identify most trace components at this low ppM level. The sulfur gases which have the fewest interferences include H/sub 2/S, COS, CH/sub 3/SH and SO/sub 2/. These gases can be determined at approximatey the 15 to 25 ppM level. Mass spectrometric analysis of low- or sub-ppM level trace components in complex gas mixture would require pre-treatment of the gas such as concentration or separation to be effective. Positive identifications were made on H/sub 2/S, CH/sub 3/SH, COS and SO/sub 2/. Water samples were taken from five points in the Rio Blanco MIS process for organic characterization and toxicity screening. There was considerable variation in the toxicity of the retort waters relative to both time into the burn and the location of the sampling point. The scrubber water samples were more toxic than the other samples. This is most likely due to the higher pH of these samples. The east holding pond samples were not toxic. These samples represent an integrated sample set as all process waters are finally discharged into this holding pond.

Research Organization:
Lawrence Livermore National Lab., CA (USA)
DOE Contract Number:
W-7405-ENG-48
OSTI ID:
6553436
Report Number(s):
UCID-18986
Country of Publication:
United States
Language:
English