skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Affinity dialysis - a method of continuous, rapid metal ion separation using dialysis membranes and selective, water-soluble polymers as extractants

Journal Article · · Sep. Sci. Technol.; (United States)

A membrane process utilizing dialysis and selective complexation by water-soluble polymers has been developed. This process, termed affinity dialysis, has been shown to be selectively extract and concentrate both cations and anions in a manner similar to ion exchange or solvent extraction. The selective removal of calcium from sodium with selectivity of about 30, removal of chromate ion from dilute streams, and separation of transition metal ions such as Cu/Fe and Cu/Zn have all been successfully demonstrated. Effects of different polymers, polymer concentration, temperature, and flow rates have been studied. The effect of increased polymer concentration is to increase product concentration if appropriate changes in feed, polymer solution, and strip flow rates are made. A continuous polymer solution recycle and regeneration system has been constructed and operated with Cu/Zn and chromate/chloride feed streams. Removal of over 95% of the desired ion in one pass and concentration factors of product over effluent in excess of 100 have been achieved at feed flow rates of 24 gal/d. Product concentrations of greater than 3% from as little as 400 ppm feed have been demonstrated in a continuous process. In addition, the degree of polymer loss to the effluent stream has been shown to be less than 0.01%/d for a typical system. Metal removal from typical feeds is about 0.9 g/m/sup 2/ per 1000 ppm metal in the feed. It is expected that this technique may be useful in the separation of organic and biological materials, as well as for ionic species.

Research Organization:
Standard Oil Co., Cleveland, OH (USA)
OSTI ID:
6223014
Journal Information:
Sep. Sci. Technol.; (United States), Vol. 23:10-11
Country of Publication:
United States
Language:
English