skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Comparative study of inorganic and organic components of soil formation in two watersheds of Alabama

Conference · · Geological Society of America, Abstracts with Programs; (United States)
OSTI ID:6078503
;  [1]
  1. Univ. of Alabama, Tuscaloosa, AL (United States). Dept. of Geology

Geochemical mass balances of two forested stream ecosystems in AL (Collier Creek watershed (CCw) and Choccolocco Creek watershed (ChC)) were calculated to evaluate soil formation as a solute source for stream water chemistry. For each watershed, X-ray diffraction (XRD) analyses of soil sampled to 48 inches of depth were compared to the XRD analyses of the weathered and unweathered rock samples collected along and within the stream channel to qualitatively determine the weathering products and possible weathering reactions. Petrographic and SEM data provided verification. Exact chemical compositions of the primary and secondary minerals were determined by electron microprobe analysis. Similar mineral species were identified in the rock samples of both watersheds. The dominant clay mineral species in the rock samples of both watersheds was kaolinite. The major source of calcium and additional source of bicarbonate in streamwater appears to be from the dissolution of calcite. Iron released by the weathering of chlorite and phengite is oxidized to form hematite and/or goethite in the weathered rock samples and at depths of two to three feet in the soil of both watersheds, explaining the deficiency of iron in the stream water chemistry. Alteration of chlorite in the soil of CCw appears to produce a mixed-layer chlorite/vermiculite, which requires slow weathering. These factors may be attributed to organic interaction. The phengitic illite in the ChC soil alters to a mixed-layer illite/vermiculite. ChC has streamwater higher in alkalinity, pH, and total dissolved solute concentrations than CCw because of differences in bedrock chemistry and alteration. The stream water chemistry in both watersheds appears to be influenced mainly by the inorganic weathering of the bedrock and soil formation.

OSTI ID:
6078503
Report Number(s):
CONF-9304188-; CODEN: GAAPBC
Journal Information:
Geological Society of America, Abstracts with Programs; (United States), Vol. 25:4; Conference: 42. annual Geological Society of America (GSA) Southeastern Section meeting, Tallahassee, FL (United States), 1-2 Apr 1993; ISSN 0016-7592
Country of Publication:
United States
Language:
English