skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Simulated annealing and stochastic learning in optical neural nets: An optical Boltzmann machine

Miscellaneous ·
OSTI ID:6043246

This dissertation deals with the study of stochastic learning and neural computation in opto-electronic hardware. It presents the first demonstration of a fully operational optical learning machine. Learning in the machine is stochastic taking place in a self-organized multi-layered opto-electronic neural net with plastic connectivity weights that are formed in a programmable non-volatile spatial light modulator. Operation of the machine is made possible by two developments in this work: (a) Fast annealing by optically induced tremors in the energy landscape of the net. The objective of this scheme is to exploit the parallelism of the optical noise pattern so as to speed up the simulated annealing process. The procedure can be viewed as that of generating controlled gradually decreasing deformations or tremors in the energy landscape of the net that prevents entrapment in a local minimum energy state. Both the random drawing of neurons and the state update of the net are now done in parallel at the same time and without having to computer explicitly the change in the energy of the net and associated Boltzmann factor as required ordinarily in the Metropolis-Kirkpartrik simulated annealing algorithm. This leads to significant acceleration of the annealing process. (b) Stochastic learning with binary weights. Learning in opto-electronic neural nets can be simplified greatly if binary weights can be used. A third development, that is the development of schemes for driving and enhancing the frame rate of magneto-optic spatial light modulators, can make the machine learning speed potentially fast. Details of these developments together with the principle, architecture, structure, and performance evaluation of this machine are given.

Research Organization:
Pennsylvania Univ., Philadelphia, PA (United States)
OSTI ID:
6043246
Resource Relation:
Other Information: Thesis (Ph.D)
Country of Publication:
United States
Language:
English