skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Biosynthesis of sulfoquinovosyldiacylglycerol in higher plants

Journal Article · · Plant Physiol.; (United States)
OSTI ID:5905076

Intact spinach chloroplasts incorporated /sup 35/SO/sub 4//sup 2 -/ into sulfoquinovosyldiacylglycerol in the dark at rates equivalent to those previously reported for illuminated chloroplasts provided that either ATP itself or an ATP-generating system was added. No additional reductant was necessary for SQDG synthesis by chloroplasts. The optimal concentration of ATP was between 2 and 3 millimolar. Rates of synthesis up to 2.6 nanomoles per milligram chlorophyll per hour were observed. UTP, GTP, and CTP could not substitute for ATP. Incubation of UTP with ATP (1:1) stimulated synthesis of sulfoquinovosyldiacylglycerol. No additional stimulation of the reaction was observed upon addition of other nucleoside triphosphates with ATP. For the generation of ATP in the chloroplast, addition of dihydroxyacetone phosphate alone did not promote synthesis of sulfoquinovosyldiacylglycerol, but in combination with inorganic phosphate and oxaloacetate, rates of synthesis up to 3.2 nanomoles per milligram chlorophyll per hour were observed. Dark synthesis was optimal in the presence of 2 millimolar dihydroxyacetone phosphate, 2 millimolar oxaloacetate, and 1 millimolar KH/sub 2/PO/sub 4/.

Research Organization:
Plant Cell Research Institute, Dublin, CA
OSTI ID:
5905076
Journal Information:
Plant Physiol.; (United States), Vol. 84:3
Country of Publication:
United States
Language:
English