skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Deuterium and selenium-77 NMR study of the condensed phases of hydrogen selenide

Journal Article · · J. Phys. Chem.; (United States)
DOI:https://doi.org/10.1021/j100401a015· OSTI ID:5818414

Hydrogen selenide has been studied by /sup 2/H and /sup 77/Se NMR between 57 and 273 K, in order to characterize the molecular motions. In solid III the molecules are essentially rigid at approx. 77 K, but there is evidence for the onset of a slow motion just before the transition to phase II. The III equivalent to II phase transition shows hysteresis. At 77 K the /sup 77/Se rigid lattice shielding tensor components were found to be sigma/sub xx/ = - 240.7, sigma/sub yy/ = -9.5, and sigma/sub zz/ = 250.2 ppm relative to sigma/sub isotropic/. The /sup 2/H line shape at 77 K indicated a quadrupole coupling constant (e/sup 2/qQ/h) = 102.6 kHz and asymmetry parameter eta = 0.113, whereas in phase II at 120 K(e/sup 2/qQ/h) = 56.9 kHz, eta = 0 and in supercooled phase II at 85 K eta = 0.059. In the plastic crystalline phase I both /sup 2/H and /sup 77/Se line shapes are completely averaged by rapid overall rotations. Apparent activation energies of 3.5 kJ mol/sup -1/ (solid I) and 3.4 kJ mol/sup -1/ (liquid) were obtained from /sup 2/H T/sub 1/ measurements, and 4.3 kJ mol/sup -1/ (solid I) and 5.7 kJ mol/sup -1/ (liquid) were obtained from /sup 77/Se T/sub 1/ measurements. The /sup 77/Se spectra show a large deuterium isotope shift of 7 ppm per deuterium, and the chemical shift also shows large discontinuities at the gas-liquid-solid I phase transitions. 45 references, 6 figures, 4 tables.

Research Organization:
Dalhousie Univ., Halifax, Nova Scotia
OSTI ID:
5818414
Journal Information:
J. Phys. Chem.; (United States), Vol. 90:10
Country of Publication:
United States
Language:
English