skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Enzymatic synthesis of rubber polymer in Hevea brasiliensis

Conference · · Plant Physiology, Supplement; (United States)
OSTI ID:5591679
; ;  [1]
  1. Texas A and M Univ., College Station (United States)

Light and Dennis purified serum soluble rubber transferase from Hevea latex to homogeneity. Prenyl transferase co-purified with rubber transferase. In the absence of washed rubber particles (WRP) the prenyl transferase catalyzed the formation of trans FPP from DMAPP and IPP. In the presence of WRP the transferase catalyzed cis additions of IPP to pre-existing rubber chains. Control mixtures of WRP, Mg{sup 2+} and FPP were not included to test for the contributions of the bound rubber transferase on WRP to the incorporation of IPP into polyisoprene. Bound rubber transferase catalyzes the repetitive addition of IPP to allylic-PP starter molecules to form polyisoprene. The order of utilization of allylic-PP starters was GGPP > FPP > GPP > DMAPP. The authors have shown that the polyisoprene enzymatically synthesized on WRP is a bimodal polymer consisting of different mol wt rubber chains similar to the polymeric characteristics of natural rubber. The bound rubber transferase was solubilized with Chaps and purified on DEAE-cellulose. The polymerization reaction catalyzed by the purified preparation showed a 98% requirement for pre-existing rubber chains. Results suggest that the prenyl transferase from Hevea serum may be part of the polymer starter system furnishing allylic-PP for the bound rubber transferase.

OSTI ID:
5591679
Report Number(s):
CONF-9107184-; CODEN: PPYSA
Journal Information:
Plant Physiology, Supplement; (United States), Vol. 96:1; Conference: Annual meeting of the American Society of Plant Physiology, Albuquerque, NM (United States), 28 Jul - 1 Aug 1991; ISSN 0079-2241
Country of Publication:
United States
Language:
English