skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Aerosol size distribution, composition, and CO sub 2 backscatter at Mauna Loa Observatory

Journal Article · · Journal of Geophysical Research; (United States)
DOI:https://doi.org/10.1029/90JD02211· OSTI ID:5469979
;  [1]
  1. Univ. of Hawaii, Honolulu (USA)

Continuous measurements of aerosol size distributions were obtained during Jan-Mar and Nov-Dec periods of 1988 at Mauna Loa Observatory, Hawaii. These periods were chosen in order to characterize aerosol physiochemistry during periods representative of low-dust atmospheric conditions and periods associated with appreciable Asian dust transport to that site. Size distributions for particles with diameters between 0.15 and 7.6 {mu}m were accumulated in 256 size bins of a laser optical particle counter for 3-hour intervals during most of the period. The aerosol sample stream was heated to selected temperatures in order to provide size-discriminated measurements of aerosol volatility. Resulting data were used to assess the variability in aerosol concentrations and properties related to aerosol backscatter values at a wavelength of 10.6 {mu}m, {beta}{sub CO{sub 2}}, in the mid-troposphere. Low aerosol concentrations, considered representative of mid-tropospheric air, occurred in downslope flow between midnight and sunrise. Measurements for these time periods suggest that {beta}{sub CO{sub 2}} varied from a low of about 5 {times} 10{sup {minus}12}m{sup {minus}1}sr{sup {minus}1} to a high of 5 {times} 10{sup {minus}8}m{sup {minus}1}sr{sup {minus}1}. Coarse particles with diameters between 1.0 and 5.0 {mu}m account for most of the derived values of {beta}{sub CO{sub 2}} at all but the highest and lowest aerosol mass concentrations. Volatile aerosol appears to dominate aerosol mass during the cleanest periods but was a small fraction of the total during dust events. The authors estimate that minimum values for {beta}{sub CO{sub 2}} at about 8 km should usually fall in the range of 1-3 {times} 10{sup {minus}12}m{sup {minus}1}sr{sup {minus}1} and be dominated by a sulfate aerosol.

OSTI ID:
5469979
Journal Information:
Journal of Geophysical Research; (United States), Vol. 96:D3; ISSN 0148-0227
Country of Publication:
United States
Language:
English