skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Study of fundamental chemical processes in explosive decomposition by laser-powered homogeneous pyrolysis. Final report 1 jul 78-31 aug 81

Technical Report ·
OSTI ID:5406601

Very Low-Pressure Pyrolysis studies of 2,4-dinitrotoluene decomposition resulted in decomposition rates consistent with log (ks) = 12.1 - 43.9/2.3 RT. These results support the conclusion that previously reported 'anomalously' low Arrhenius parameters for the homogeneous gas-phase decomposition of ortho-nitrotoluene actually represent surface-catalyzed reactions. Preliminary qualitative results for pyrolysis of ortho-nitrotouene in the absence of hot reactor walls, using the Laser-Powered Homogeneous Pyrolysis technique (LPHP), provide further support for this conclusion: only products resulting from Ph-NO2 bond scission were observed; no products indicating complex intramolecular oxidation-reduction or elimination processes could be detected. The LPHP technique was successfully modified to use a pulsed laser and a heated flow system, so that the technique becomes suitable for study of surface-sensitive, low vapor pressure substrates such as TNT. The validity and accuracy of the technique was demonstrated by applying it to the decomposition of substances whose Arrhenius parameters for decomposition were already well known. IR-fluorescence measurements show that the temperature-space-time behavior under the present LPHP conditions is in agreement with expectations and with requirements which must be met if the method is to have quantitative validity. LPHP studies of azoisopropane decomposition, chosen as a radical-forming test reaction, show the accepted literature parameters to be substantially in error and indicate that the correct values are in all probability much closer to those measured in this work: log (k/s) = 13.9 - 41.2/2.3 RT.

Research Organization:
SRI International, Menlo Park, CA (USA)
OSTI ID:
5406601
Report Number(s):
AD-A-108022/5; SRI-7399
Country of Publication:
United States
Language:
English