skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Investigation of function similarities between the sarcoplasmic reticulum and platelet calcium-dependent adenosinetriphosphatases with the inhibitors quercetin and calmidazolium

Journal Article · · Biochemistry; (United States)
OSTI ID:5303637

The platelet and skeletal sarcoplasmic reticulum calcium-dependent adenosinetriphosphatases (Ca/sup 2 +/-ATPases) were functionally compared with respect to substrate activation by steady-state kinetic methods using the inhibitors quercetin and calmidazolium. Quercetin inhibited platelet and sarcoplasmic reticulum Ca/sup 2 +/-ATPase activities in a dose-dependent manner with IC/sub 50/ values of 25 and 10 ..mu..M, respectively. Calmidazolium also inhibited platelet and sarcoplasmic reticulum Ca/sup 2 +/-ATPase activities, with half-maximal inhibition measured at 5 and 4 ..mu..M, respectively. Both inhibitors also affected the (/sup 45/Ca) calcium transport activity of intact platelet microsomes at concentrations similar to those which reduced Ca/sup 2 +/-ATPase activity. These inhibitors were then used to examine substrate ligation by the platelet and sarcoplasmic reticulum calcium pump proteins. For both Ca/sup 2 +/-ATPase proteins, quercetin has an affinity for the E-Ca/sub 2/ (fully ligated with respect to calcium at the exterior high-affinity calcium binding sites, unligated with respect to ATP) conformational state of the protein that is approximately 10-fold grater than for other conformational states in the hydrolytic cycle. Quercetin can thus be considered a competitive inhibitor of the calcium pump proteins with respect to ATP. In contrast to the effect of quercetin, calmidazolium interacts with the platelet and sarcoplasmic reticulum Ca/sup 2 +/-ATPases in an uncompetitive manner. The dissociation constants for this inhibitor for the different conformational states of the calcium pump proteins were similar, indicating that calmidazolium has equal affinity for all of the reaction intermediates probed. These observations indicate that the substrate ligation processes are similar for the two pump proteins. This supports the concept that the hydrolytic cycles of the two proteins are comparable.

Research Organization:
Univ. of North Carolina, Chapel Hill
OSTI ID:
5303637
Journal Information:
Biochemistry; (United States), Vol. 26:24
Country of Publication:
United States
Language:
English