skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: High-performance DC SQUIDs with submicrometer niobium Josephson junctions

Journal Article · · J. Low Temp. Phys.; (United States)
DOI:https://doi.org/10.1007/BF00682481· OSTI ID:5151702

We report on the fabrication and performance of low-noise, all-niobium, thin-film planar dc SQUIDs with submicrometer Josephson junctions. The junctions are evaporated obliquely through a metal shadow evaporation mask, which is made using optical lithography with 0.5 ..mu..m tolerance. The Josephson junction barrier is formed by evaporating a thin silicon film and with a subsequent oxidation in a glow discharge. The junction parameters can be reproduced within a factor of two. Typical critical currents of the SQUIDs are about 3 ..mu..A and the resistances are about 100 ..cap omega... With SQUIDs having an inductance of 1 nH the voltage modulation is a least 60 ..mu..V. An intrinsic energy resolution of 4 x 10/sup -32/ J/Hz has been reached. The SQUIDs are coupled to wire-wound input coils or with thin-film input coils. The thin-film input coil consists of a niobium spiral of 20 turns on a separate substrate. In both cases the coil is glued onto a 2-nH SQUID with a coupling efficiency of at least 0.5. Referred to the thin-film input coil, the best coupled energy resolution achieved is 1.2 x 10/sup -30/ J/Hz measured in a flux-locked loop at frequencies above 10 Hz. As far as we know, this is the best figure achieved with an all-refractory-metal thin-film SQUID. The fabrication technique used is suited for making circuits with SQUID and pickup coil on the same substrate. We describe a compact, planar, first-order gradiometer integrated with a SQUID on a single substrate. The gradient noise of this device is 3 x 10/sup -12/ Tm/sup -1/. The gradiometer has a size of 12 mm x 17 mm, is simple to fabricate, an is suitable for biomedical applications.

Research Organization:
Department of Applied Physics, Delft University of Technology, Delft, Netherlands
OSTI ID:
5151702
Journal Information:
J. Low Temp. Phys.; (United States), Vol. 53:3
Country of Publication:
United States
Language:
English