skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Reservoir characteristics of low-permeability sandstones in the Rocky Mountains

Journal Article · · Mountain Geologist
OSTI ID:482273

Understanding gas production from low-permeability sandstones requires an understanding of the in situ porosity, brine saturation, and effective gas permeability at reservoir brine saturation. Diagenesis in these sandstones commonly resulted in the destruction of much of the original intergranular porosity and left dissolved grains, clay-filled pores, and sheet-like connecting intergranular pore throats. Pore throats or channels that connect larger pores typically range in size from 1 to 0.1 micron and represent only a small portion of the total porosity. In most low-permeability sandstones, porosity is not significantly changed by confining stress changes, but in situ effective gas permeabilities range from 10 to 1,000 times less than routine air permeability. The influence of confining stress on permeability can be attributed primarily to the decrease in size of the thin, tabular pore throats that connect the larger pores. Under stress, pore throats decrease in diameter by up to 50% to 70% resulting in permeability decreases of 10 to 40 times. Gas effective permeabilities also decrease rapidly to less than 1% of absolute values at water saturations above approximately 40% to 50%. {open_quotes}Irreducible{close_quotes} water saturations increase with decreasing porosity and permeability, and, in sandstones with less than 0.01 md permeability, {open_quotes}irreducible{close_quotes} water saturations increase dramatically. Cumulative flow and storage capacity plots indicate that very thin higher permeability intervals typically yield a large percentage of the cumulative flow capacity. Increased water saturations due to drilling or stimulation result in lower effective gas permeabilities and can unknowingly be stabilized by capillary pressure forces if pore pressures are decreased. This type of formation damage can be remedied by increasing the gas pore pressure to displace mobile water.

OSTI ID:
482273
Journal Information:
Mountain Geologist, Vol. 34, Issue 1; Other Information: PBD: Jan 1997
Country of Publication:
United States
Language:
English