skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Thermal hydraulics analysis of LIBRA-SP target chamber

Journal Article · · Fusion Technology
OSTI ID:447260
 [1]
  1. Univ. of Wisconsin, Madison, WI (United States)

LIBRA-SP is a conceptual design study of an inertially confined 1000 MWe fusion power reactor utilizing self-pinched light ion beams. There are 24 ion beams which are arranged around the reactor cavity. The reaction chamber is an upright cylinder with an inverted conical roof resembling a mushroom, and a pool floor. The vertical sides of the cylinder are occupied by a blanket zone consisting of many perforated rigid HT-9 ferritic steel tubes called PERITs (PEr-forated RIgid Tube). The breeding/cooling material, liquid lead-lithium, flows through the PERITs, providing protection to the reflector/vacuum chamber so as to make it a lifetime component. The neutronics analysis and cavity hydrodynamics calculations are performed to account for the neutron heating and also to determine the effects of vaporization/condensation processes on the surface heat flux. The steady state nuclear heating distribution at the midplane is used for thermal hydraulics calculations. The maximum surface temperature of the HT-9 is chosen to not exceed 625{degree}C to avoid drastic deterioration of the metal`s mechanical properties. This choice restricts the thermal hydraulics performance of the reaction cavity. The inlet first surface coolant bulk temperature is 370{degree}C, and the heat exchanger inlet coolant bulk temperature is 502{degree}C. 4 refs., 6 figs., 2 tabs.

OSTI ID:
447260
Report Number(s):
CONF-9606116-; ISSN 0748-1896; TRN: 97:005226
Journal Information:
Fusion Technology, Vol. 30, Issue 3; Conference: Annual meeting of the American Nuclear Society (ANS), Reno, NV (United States), 16-20 Jun 1996; Other Information: PBD: 1996
Country of Publication:
United States
Language:
English