skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Fructose-1,6-bisphosphatase: Genetic and physical mapping to human chromosome 9q22.3 and evaluation in non-insulin-dependent diabetes mellitus

Journal Article · · Genomics
; ;  [1]
  1. Wake Forest Univ., Winston-Salem, NC (United States); and others

PCR primers specific to the human liver fructose-1,6-bisphosphatase (FBP) gene were designed and used to isolate a cosmid clone. Physical mapping of the FBP cosmid by FISH, and genetic mapping of an associated GA repeat polymorphism (PIC = 0.35), located the liver FBP gene to chromosome 9q22.3 with no recombination between FBP and the index markers D9S196 (Z{sub max} = 13.2), D9S280 (Z{sub max} = 11.7), D9S287 (Z{sub max} = 15.6), and D9S176 (Z{sub max} = 14.4). Amplification using FBP exon-specific primers with a YAC contig from this region of chromosome 9 further refined the placement of FBP genomic sequences to an approximately 1.7-cM region flanked by D9S280 and D9S287, near the gene for Fanconi anemia group C. Precise localization of the FBP gene enabled evaluation of FBP as a candidate gene for maturity-onset diabetes of the young (MODY) and non-insulin-dependent diabetes (NIDDM) in both Caucasian and African-American families, using the highly informative markers D9S287 and D9S176. Although FBP is a rate-limiting enzyme in gluconeogenesis, using both parametric and nonparametric analysis there was no evidence for linkage of FBP to diabetes in these families. 30 refs., 4 figs., 2 tabs.

OSTI ID:
433300
Journal Information:
Genomics, Vol. 29, Issue 1; Other Information: PBD: 1 Sep 1995
Country of Publication:
United States
Language:
English