skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Response of tropical clouds to the interannual variation of sea surface temperature

Journal Article · · Journal of Climate
 [1];  [2]
  1. Univ. of Arizona, Tucson, AZ (United States)
  2. California Institute of Technology, Pasadena, CA (United States); and others

Connections between large-scale interannual variations of clouds, deep convection, atmospheric winds, vertical thermodynamic structure, and sea surface temperatures (SST) over global tropical oceans are examined. SST warming associated with El Nino significantly impacted the global tropical cloud field. Extensive variations of the total cloud field, dominated by changes of high and middle clouds, occurred in the northeastern Indian, western and central Pacific, and western Atlantic Oceans. Total cloud variation, dominated by low cloud variation, was relatively weak in the eastern Pacific and the Atlantic due to cancellation between high and low cloud changes. Destabilization of the lapse rate between 900 and 750 mb was more important in enhancing convective instability than was the change of local SST in the equatorial central Pacific during the 1987 El Nino. In the subtropical Pacific, the change of lapse rate between 900 and 750 mb associated with anomalous subsidence and the decrease of boundary-layer buoyancy due to a decrease of temperature and moisture were important in enhancing convective stability. Consequently, convection and high and middle clouds decreased in these areas. The change of low clouds in the equatoral and southeastern Atlantic correlated to local SST and SST changes in the equatorial eastern Pacific, and the increase of low clouds was consistent with the sharper inversion during the 1987 El Nino. The coherence between clouds and SST tendency shows that SST tendency leads cloud variation in the equatorial Pacific. Thus, the change of clouds does not dominate the sign of SST tendency even though the cloud change was maximum during the 1987 El Nino. In some areas of the Indian, subtropical Pacific, and North Atlantic Oceans, cloud change leads SST tendency. Cloud change might affect SST tendency in these regions. 60 refs., 12 figs., 1 tab.

OSTI ID:
273950
Journal Information:
Journal of Climate, Vol. 9, Issue 3; Other Information: PBD: Mar 1996
Country of Publication:
United States
Language:
English