skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Superabsorbent hydrogel composite based on copolymer cellulose/poly (vinyl alcohol)/CNT

Journal Article · · AIP Conference Proceedings
DOI:https://doi.org/10.1063/1.4946949· OSTI ID:22606715
; ; ;  [1]
  1. Department of Chemistry, Indonesia University of Education, Setiabudi 229 Bandung, West Java, Indonesia 40154 (Indonesia)

Superabsorbent hydrogels are cross-linked hydrophilic polymers that can absorb and retain a large volume of water, saline solution, or physiological fluids. A distinctive superabsorbent hydrogel composite based on cellulose/ poly (vinyl alcohol)/ carbon nanotubes was successfully synthesized via the graft bio-copolymerization in an aqueous medium with glutaraldehide as a crosslinking agent. The effect of carbon nanotubes (CNT) on water absorption capacity and mechanical properties of superabsorbent composite were particularly investigated. The Fourier transform infrared spectra showed the evidence of copolymerization of hydrogel precursors as well as the interaction of CNT filler with the hydrogel matrices, as indicated by the shifting of peak intensity and position of several functional groups (O-H, C-H sp{sup 3}, C=O, C-N, C-O). The modification of hydrogel surface morphology and porosity owing to CNT insertion was also confirmed by scanning electron microscopy images. The CNT insertion improved the mechanical strength of superabsorbent hydrogel composites. Moreover, insertion of CNT into hydrogel matrix remarkably increased the swelling capacity of superabsorbent composites up to 840%. This huge water absorption capacity of hydrogel composites offers promising applications in development of superabsorbent polymers.

OSTI ID:
22606715
Journal Information:
AIP Conference Proceedings, Vol. 1729, Issue 1; Conference: ISCPMS 2015: 1. international symposium on current progress in mathematics and sciences, Depok (Indonesia), 3-4 Nov 2015; Other Information: (c) 2016 Author(s); Country of input: International Atomic Energy Agency (IAEA); ISSN 0094-243X
Country of Publication:
United States
Language:
English