skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Transitional properties of supersolitons in a two electron temperature warm multi-ion plasma

Journal Article · · Physics of Plasmas
DOI:https://doi.org/10.1063/1.4959851· OSTI ID:22599938

The existence domain of an ion acoustic supersoliton and its transition to a regular kind of solitary wave have been explored in detail using Sagdeev pseudopotential technique for a two electron temperature warm multi-ion plasma having two species of ions. It was found that both the cold to hot electron temperature ratio and their respective ambient densities play a deterministic role for the existence of a supersoliton, as well as its transitional processes to a regular solitary wave. Analogous to a double layer solution, which often marks the boundary of the existence domain of a regular solitary wave, a “curve of inflection” determines the boundary of the existence domain of a supersoliton. The characteristics of the “curve of inflection,” in turn, depend on the respective concentrations of the two ion species. It is observed that the supersolitons are actually a subset of a more general kind of solutions which are characterized by a fluctuation in the corresponding charge separation which precedes their maximum amplitude. It is also observed that these novel kinds of solitary structures, including supersolitons, occur only for a very narrow range of parameters near constant amplitude beyond which the wave breaks.

OSTI ID:
22599938
Journal Information:
Physics of Plasmas, Vol. 23, Issue 8; Other Information: (c) 2016 Author(s); Country of input: International Atomic Energy Agency (IAEA); ISSN 1070-664X
Country of Publication:
United States
Language:
English