skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Enhanced organic photovoltaic properties via structural modifications in PEDOT:PSS due to graphene oxide doping

Journal Article · · Materials Research Bulletin

Highlights: • Graphene oxide(GO) blended with PEDOT:PSS is used as HTL for PTB7:PCBM BHJ solar cells. • Increase in conductivity due to structural alterations in PEDOT:PSS by GO addition. • The structural alterations are reaveled under Raman spectroscopy, XPS and AFM. • PEDOT:PSS changed to extended coil due to addition of GO to PEDOT:PSS. • Enhanced conductivity after GO addition to PEDOT:PSS resulted in enhanced PCE. - Abstract: Poly(3,4-thylenedioxythiophene):poly(styrene sulfonate), PEDOT:PSS is a well-known conductive polymer for hole transport in organic devices, the properties of which can be enhanced by doping. Common dopants are metal oxides and nanoparticles. In this study, addition of graphene oxide (GO) to PEDOT:PSS as a dopant is addressed in organic photovoltaics (OPVs). With GO doping, electrical conductivity and transport properties of PEDOT:PSS increases due to structural alterations in the presence of −COOH and −OH functional groups in GO. These structural alterations have been revealed under detailed study of Raman spectra, X-ray photoelectron spectroscopy (XPS) analysis, Topographical and conductive Atom force microscopy (AFM/C-AFM) mapping. OPVs fabricated using PEDOT:PSS: GO (5:1) as a hole transport layer (HTL) exhibited a power conversion efficiency (PCE) of 7.68%, which was higher than the 7.01% that was obtained for the OPVs using pristine PEDOT:PSS.

OSTI ID:
22581434
Journal Information:
Materials Research Bulletin, Vol. 74; Other Information: Copyright (c) 2015 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 0025-5408
Country of Publication:
United States
Language:
English