skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: WE-EF-207-03: Design and Optimization of a CBCT Head Scanner for Detection of Acute Intracranial Hemorrhage

Journal Article · · Medical Physics
DOI:https://doi.org/10.1118/1.4926010· OSTI ID:22572225
; ; ; ; ; ; ;  [1]; ;  [2]
  1. Johns Hopkins University, Balitmore, MD (United States)
  2. Carestream Health, Rochester, NY (United States)

Purpose: To design a dedicated x-ray cone-beam CT (CBCT) system suitable to deployment at the point-of-care and offering reliable detection of acute intracranial hemorrhage (ICH), traumatic brain injury (TBI), stroke, and other head and neck injuries. Methods: A comprehensive task-based image quality model was developed to guide system design and optimization of a prototype head scanner suitable to imaging of acute TBI and ICH. Previously reported models were expanded to include the effects of x-ray scatter correction necessary for detection of low contrast ICH and the contribution of bit depth (digitization noise) to imaging performance. Task-based detectablity index provided the objective function for optimization of system geometry, x-ray source, detector type, anti-scatter grid, and technique at 10–25 mGy dose. Optimal characteristics were experimentally validated using a custom head phantom with 50 HU contrast ICH inserts imaged on a CBCT imaging bench allowing variation of system geometry, focal spot size, detector, grid selection, and x-ray technique. Results: The model guided selection of system geometry with a nominal source-detector distance 1100 mm and optimal magnification of 1.50. Focal spot size ∼0.6 mm was sufficient for spatial resolution requirements in ICH detection. Imaging at 90 kVp yielded the best tradeoff between noise and contrast. The model provided quantitation of tradeoffs between flat-panel and CMOS detectors with respect to electronic noise, field of view, and readout speed required for imaging of ICH. An anti-scatter grid was shown to provide modest benefit in conjunction with post-acquisition scatter correction. Images of the head phantom demonstrate visualization of millimeter-scale simulated ICH. Conclusions: Performance consistent with acute TBI and ICH detection is feasible with model-based system design and robust artifact correction in a dedicated head CBCT system. Further improvements can be achieved with incorporation of model-based iterative reconstruction techniques also within the scope of the task-based optimization framework. David Foos and Xiaohui Wang are employees of Carestream Health.

OSTI ID:
22572225
Journal Information:
Medical Physics, Vol. 42, Issue 6; Other Information: (c) 2015 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA); ISSN 0094-2405
Country of Publication:
United States
Language:
English