skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: From liquid crystal models to the guiding-center theory of magnetized plasmas

Journal Article · · Annals of Physics

Upon combining Northrop’s picture of charged particle motion with modern liquid crystal theories, this paper provides a new description of guiding center dynamics (to lowest order). This new perspective is based on a rotation gauge field (gyrogauge) that encodes rotations around the magnetic field. In liquid crystal theory, an analogue rotation field is used to encode the rotational state of rod-like molecules. Instead of resorting to sophisticated tools (e.g. Hamiltonian perturbation theory and Lie series expansions) that still remain essential in higher-order gyrokinetics, the present approach combines the WKB method with a simple kinematical ansatz, which is then replaced into the charged particle Lagrangian. The latter is eventually averaged over the gyrophase to produce the guiding-center equations. A crucial role is played by the vector potential for the gyrogauge field. A similar vector potential is related to liquid crystal defects and is known as wryness tensor in Eringen’s micropolar theory.

OSTI ID:
22560339
Journal Information:
Annals of Physics, Vol. 371, Issue Complete; Other Information: Copyright (c) 2016 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 0003-4916
Country of Publication:
United States
Language:
English