skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: TECHNIQUES FOR HIGH-CONTRAST IMAGING IN MULTI-STAR SYSTEMS. I. SUPER-NYQUIST WAVEFRONT CONTROL

Journal Article · · Astrophysical Journal
; ;  [1]
  1. NASA AMES Research Center, Moffett Field, CA 94035 (United States)

Direct imaging of extra-solar planets is now a reality with the deployment and commissioning of the first generation of specialized ground-based instruments (GPI, SPHERE, P1640, and SCExAO). These systems allow of planets 10{sup 7} times fainter than their host star. For space-based missions (EXCEDE, EXO-C, EXO-S, WFIRST), various teams have demonstrated laboratory contrasts reaching 10{sup −10} within a few diffraction limits from the star. However, all of these current and future systems are designed to detect faint planets around a single host star, while most non-M-dwarf stars such as Alpha Centauri belong to multi-star systems. Direct imaging around binaries/multiple systems at a level of contrast allowing detection of Earth-like planets is challenging because the region of interest is contaminated by the host star's companion in addition to the host itself. Generally, the light leakage is caused by both diffraction and aberrations in the system. Moreover, the region of interest usually falls outside the correcting zone of the deformable mirror (DM) with respect to the companion. Until now, it has been thought that removing the light of a companion star is too challenging, leading to the exclusion of many binary systems from target lists of direct imaging coronographic missions. In this paper, we will show new techniques for high-contrast imaging of planets around multi-star systems and detail the Super-Nyquist Wavefront Control (SNWC) method, which allows wavefront errors to be controlled beyond the nominal control region of the DM. Our simulations have demonstrated that, with SNWC, raw contrasts of at least 5 × 10{sup −9} in a 10% bandwidth are possible.

OSTI ID:
22525496
Journal Information:
Astrophysical Journal, Vol. 810, Issue 1; Other Information: Country of input: International Atomic Energy Agency (IAEA); ISSN 0004-637X
Country of Publication:
United States
Language:
English