skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A comparison of the optical properties of InGaN/GaN multiple quantum well structures grown with and without Si-doped InGaN prelayers

Journal Article · · Journal of Applied Physics
DOI:https://doi.org/10.1063/1.4941321· OSTI ID:22494996
;  [1]; ; ;  [2]
  1. School of Physics and Astronomy, Photon Science Institute, University of Manchester, Manchester M13 9PL (United Kingdom)
  2. Department of Material Science and Metallurgy, 27 Charles Babbage Road, University of Cambridge, Cambridge CB3 0FS (United Kingdom)

In this paper, we report on a detailed spectroscopic study of the optical properties of InGaN/GaN multiple quantum well structures, both with and without a Si-doped InGaN prelayer. In photoluminescence and photoluminescence excitation spectroscopy, a 2nd emission band, occurring at a higher energy, was identified in the spectrum of the multiple quantum well structure containing the InGaN prelayer, originating from the first quantum well in the stack. Band structure calculations revealed that a reduction in the resultant electric field occurred in the quantum well immediately adjacent to the InGaN prelayer, therefore leading to a reduction in the strength of the quantum confined Stark effect in this quantum well. The partial suppression of the quantum confined Stark effect in this quantum well led to a modified (higher) emission energy and increased radiative recombination rate. Therefore, we ascribed the origin of the high energy emission band to recombination from the 1st quantum well in the structure. Study of the temperature dependent recombination dynamics of both samples showed that the decay time measured across the spectrum was strongly influenced by the 1st quantum well in the stack (in the sample containing the prelayer) leading to a shorter average room temperature lifetime in this sample. The room temperature internal quantum efficiency of the prelayer containing sample was found to be higher than the reference sample (36% compared to 25%) which was thus attributed to the faster radiative recombination rate of the 1st quantum well providing a recombination pathway that is more competitive with non-radiative recombination processes.

OSTI ID:
22494996
Journal Information:
Journal of Applied Physics, Vol. 119, Issue 5; Other Information: (c) 2016 Author(s); Country of input: International Atomic Energy Agency (IAEA); ISSN 0021-8979
Country of Publication:
United States
Language:
English