skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Effects of substitution, pressure, and temperature on the phonon mode in layered-rocksalt-type Li{sub (1−x)/2}Ga{sub (1−x)/2}Zn{sub x}O (x = 0.036–0.515) alloys

Journal Article · · Journal of Applied Physics
DOI:https://doi.org/10.1063/1.4935619· OSTI ID:22492932
; ; ; ; ;  [1]
  1. Institute of Atomic and Molecular Physics, Sichuan University, 610065 Chengdu (China)

ZnO-based semiconductor alloys, Li{sub (1−x)/2}Ga{sub (1−x)/2}Zn{sub x}O (x = 0.036–0.515) with a layered-rocksalt-type structure, have been prepared under high pressure. The composition, pressure, and temperature dependence of phonons have been studied by Raman spectroscopy. We observe two disorder-activated Raman (DAR) modes when the Zn composition x increases: a broad Raman peak at ca. 400 cm{sup −1} and a left-shoulder peak at ca. 530 cm{sup −1} on the low-frequency side of A{sub 1g} mode at ca. 580 cm{sup −1}, which can be explained by reference to the phonon density of states for rocksalt-type ZnO. With the increase of the pressure and temperature, the left-shoulder DAR mode induced by substitution does not change at the same pace with the A{sub 1g} mode at Brillouin-zone center. We find that ion substitution can be seen as a kind of chemical pressure, and the chemical pressure caused by internal substitution and the physical pressure caused by external compression have equivalent effects on the shortening of correlation length, the distortion of crystal lattice, and the change of atomic occupation.

OSTI ID:
22492932
Journal Information:
Journal of Applied Physics, Vol. 118, Issue 18; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0021-8979
Country of Publication:
United States
Language:
English