skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: GPU simulation of nonlinear propagation of dual band ultrasound pulse complexes

Journal Article · · AIP Conference Proceedings
DOI:https://doi.org/10.1063/1.4934440· OSTI ID:22492648
;  [1]
  1. NTNU, Department of Circulation and Medical Imaging, 7491 Trondheim (Norway)

In a new method of ultrasound imaging, called SURF imaging, dual band pulse complexes composed of overlapping low frequency (LF) and high frequency (HF) pulses are transmitted, where the frequency ratio LF:HF ∼ 1 : 20, and the relative bandwidth of both pulses are ∼ 50 − 70%. The LF pulse length is hence ∼ 20 times the HF pulse length. The LF pulse is used to nonlinearly manipulate the material elasticity observed by the co-propagating HF pulse. This produces nonlinear interaction effects that give more information on the propagation of the pulse complex. Due to the large difference in frequency and pulse length between the LF and the HF pulses, we have developed a dual level simulation where the LF pulse propagation is first simulated independent of the HF pulse, using a temporal sampling frequency matched to the LF pulse. A separate equation for the HF pulse is developed, where the the presimulated LF pulse modifies the propagation velocity. The equations are adapted to parallel processing in a GPU, where nonlinear simulations of a typical HF beam of 10 MHz down to 40 mm is done in ∼ 2 secs in a standard GPU. This simulation is hence very useful for studying the manipulation effect of the LF pulse on the HF pulse.

OSTI ID:
22492648
Journal Information:
AIP Conference Proceedings, Vol. 1685, Issue 1; Conference: 20. international symposium on nonlinear acoustics, Ecully (France), 29 Jun - 3 Jul 2015, 2. international sonic boom forum, Ecully (France), 29 Jun - 3 Jul 2015; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0094-243X
Country of Publication:
United States
Language:
English