skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Influence of tool shape on lattice rearrangement under loading conditions reproducing friction stir welding

Journal Article · · AIP Conference Proceedings
DOI:https://doi.org/10.1063/1.4932780· OSTI ID:22492539

Metal behavior under loading conditions that reproduce friction stir welding was studied on the atomic scale. Calculations were conducted based on molecular dynamics simulation with potentials calculated within the embedded atom method. The loading of the interface between two crystallites, whose structure corresponded to aluminum alloy 2024, was simulated by the motion of a cone-shaped tool along the interface with constant angular and translational velocities. The motion of the rotating tool causes fracture of the workpiece crystal structure with subsequent mixing of surface atoms of the interfacing crystallites. It is shown that the resistance force acting on the moving tool from the workpiece and the process of structural defect formation in the workpiece depend on the tool shape.

OSTI ID:
22492539
Journal Information:
AIP Conference Proceedings, Vol. 1683, Issue 1; Conference: International conference on advanced materials with hierarchical structure for new technologies and reliable structures 2015, Tomsk (Russian Federation), 21-25 Sep 2015; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0094-243X
Country of Publication:
United States
Language:
English