skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Photochemical charges separation and photoelectric properties of flexible solar cells with two types of heterostructures

Journal Article · · Applied Physics Letters
DOI:https://doi.org/10.1063/1.4937459· OSTI ID:22486252
; ; ; ;  [1]
  1. Institute of Microsystems Physics and School of Physics and Electronics, Henan University, Kaifeng 475004 (China)

Photochemical charges generation, separation, and transport at nanocrystal interfaces are central to energy conversion for solar cells. Here, Zn{sub 2}SnO{sub 4} nanowires/Cu{sub 4}Bi{sub 4}S{sub 9} (ZTO/CBS), ZTO nanowires/CBS-reduced graphene oxide (ZTO/CBS-RGO), and bulk heterojunction (BHJ) solar cells were measured. The signals of steady state and electric field-induced surface photovoltage indicate that RGO with high electron mobility can evidently improve the photovoltaic response. Besides, ZTO/CBS and ZTO/CBS-RGO cells exhibit the excellent performance and the highest efficiencies of 1.2% and 2.8%, respectively. The internal relations of photoelectric properties to some factors, such as film thickness, direct paths, RGO conductive network, energy level matching, etc., were discussed in detail. Qualitative and quantitative analyses further verified the comprehensive effect of RGO and other factors. Importantly, the fine bendable characteristic of BHJ solar cells with excellent efficiency and facile, scalable production gives the as-made flexible solar cells device potential for practical application in future.

OSTI ID:
22486252
Journal Information:
Applied Physics Letters, Vol. 107, Issue 24; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0003-6951
Country of Publication:
United States
Language:
English