skip to main content

Title: BEOL compatible high tunnel magneto resistance perpendicular magnetic tunnel junctions using a sacrificial Mg layer as CoFeB free layer cap

Perpendicularly magnetized MgO-based tunnel junctions are envisaged for future generation spin-torque transfer magnetoresistive random access memory devices. Achieving a high tunnel magneto resistance and preserving it together with the perpendicular magnetic anisotropy during BEOL CMOS processing are key challenges to overcome. The industry standard technique to deposit the CoFeB/MgO/CoFeB tunnel junctions is physical vapor deposition. In this letter, we report on the use of an ultrathin Mg layer as free layer cap to protect the CoFeB free layer from sputtering induced damage during the Ta electrode deposition. When Ta is deposited directly on CoFeB, a fraction of the surface of the CoFeB is sputtered even when Ta is deposited with very low deposition rates. When depositing a thin Mg layer prior to Ta deposition, the sputtering of CoFeB is prevented. The ultra-thin Mg layer is sputtered completely after Ta deposition. Therefore, the Mg acts as a sacrificial layer that protects the CoFeB from sputter-induced damage during the Ta deposition. The Ta-capped CoFeB free layer using the sacrificial Mg interlayer has significantly better electrical and magnetic properties than the equivalent stack without protective layer. We demonstrate a tunnel magneto resistance increase up to 30% in bottom pinned magnetic tunnel junctions andmore » tunnel magneto resistance values of 160% at resistance area product of 5 Ω.μm{sup 2}. Moreover, the free layer maintains perpendicular magnetic anisotropy after 400 °C annealing.« less
Authors:
; ; ; ; ; ; ; ; ; ; ; ; ;  [1]
  1. imec, Kapeldreef 75, Leuven 3001 (Belgium)
Publication Date:
OSTI Identifier:
22483122
Resource Type:
Journal Article
Resource Relation:
Journal Name: Applied Physics Letters; Journal Volume: 106; Journal Issue: 26; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; ANISOTROPY; ANNEALING; DAMAGE; DEPOSITS; ELECTRODES; LAYERS; MAGNESIUM OXIDES; MAGNETIC PROPERTIES; MAGNETORESISTANCE; MEMORY DEVICES; PHYSICAL VAPOR DEPOSITION; SPUTTERING; SUPERCONDUCTING JUNCTIONS