skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Optimization of plasma parameters with magnetic filter field and pressure to maximize H{sup −} ion density in a negative hydrogen ion source

Journal Article · · Review of Scientific Instruments
DOI:https://doi.org/10.1063/1.4935230· OSTI ID:22482956
; ; ;  [1]
  1. SNU Division of Graduate Education for Sustainabilization of Foundation Energy, Seoul National University, Seoul (Korea, Republic of)

Transverse magnetic filter field as well as operating pressure is considered to be an important control knob to enhance negative hydrogen ion production via plasma parameter optimization in volume-produced negative hydrogen ion sources. Stronger filter field to reduce electron temperature sufficiently in the extraction region is favorable, but generally known to be limited by electron density drop near the extraction region. In this study, unexpected electron density increase instead of density drop is observed in front of the extraction region when the applied transverse filter field increases monotonically toward the extraction aperture. Measurements of plasma parameters with a movable Langmuir probe indicate that the increased electron density may be caused by low energy electron accumulation in the filter region decreasing perpendicular diffusion coefficients across the increasing filter field. Negative hydrogen ion populations are estimated from the measured profiles of electron temperatures and densities and confirmed to be consistent with laser photo-detachment measurements of the H{sup −} populations for various filter field strengths and pressures. Enhanced H{sup −} population near the extraction region due to the increased low energy electrons in the filter region may be utilized to increase negative hydrogen beam currents by moving the extraction position accordingly. This new finding can be used to design efficient H{sup −} sources with an optimal filtering system by maximizing high energy electron filtering while keeping low energy electrons available in the extraction region.

OSTI ID:
22482956
Journal Information:
Review of Scientific Instruments, Vol. 87, Issue 2; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0034-6748
Country of Publication:
United States
Language:
English