skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Carrier injection engineering in nanowire transistors via dopant and shape monitoring of the access regions

Journal Article · · Applied Physics Letters
DOI:https://doi.org/10.1063/1.4933392· OSTI ID:22482258
; ; ; ;  [1]
  1. IM2NP UMR CNRS 7334, Aix-Marseille Université, Technopôle de Château Gombert, 60 Rue Frédéric Joliot Curie, Bâtiment Néel,13453 Marseille (France)

This work theoretically studies the influence of both the geometry and the discrete nature of dopants of the access regions in ultra-scaled nanowire transistors. By means of self-consistent quantum transport simulations, we show that discrete dopants induce quasi-localized states which govern carrier injection into the channel. Carrier injection can be enhanced by taking advantage of the dielectric confinement occurring in these access regions. We demonstrate that the optimization of access resistance can be obtained by a careful control of shape and dopant position. These results pave the way for contact resistance engineering in forthcoming device generations.

OSTI ID:
22482258
Journal Information:
Applied Physics Letters, Vol. 107, Issue 15; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0003-6951
Country of Publication:
United States
Language:
English